Skip to main content

Analysis of Food-derived Opioid Peptides

  • Chapter
  • First Online:
Opioid Food Peptides
  • 155 Accesses

Abstract

The proteins are isolated from foods like wheat, milk, soybean, spinach, and rice. The isolated proteins are dialyzed against weak salt solutions to remove the salts and sugars. The proteins are estimated by Folin Lowry or Bradford method. The purity of these proteins is checked by SDS-PAGE. Simulated gastrointestinal digestion (SGID) of the isolated proteins is done through proteolytic enzymes at 37 °C for different incubation time. The hydrolysates are filtered through centrifugal filters with different molecular weight cut-off filters (MWCOF). The generated exorphins are analyzed through analytical HPLC (RP-HPLC) using a C18 column and correlated with chemically synthesized standard exorphins. The peptide fractions are collected on the preparative HPLC and freeze lyophilized. The lyophilized powder is reconstituted in a buffer and the opioid activity is assessed on isolated organ bath using GPI or MVD assay. The other reconstituted fraction is estimated for the presence of exorphins by ELISA and the data is validated through mass spectrometers like a tandem, quadrupole ion-trap (QIT), or time of flight (TOF) (MALDI-TOF/TOF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C (2012) Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng Rev 4(4):224–243

    CAS  Google Scholar 

  • Cavazos A, Gonzalez de Mejia E (2013) Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr Rev Food Sci 12(4):364–380

    CAS  Google Scholar 

  • Cheison SC, Lai MY, Leeb E et al (2011) Hydrolysis of β-lactoglobulin by trypsin under acidic pH and analysis of the hydrolysates with MALDI-TOF-MS/MS. Food Chem 125:1241–1248

    CAS  Google Scholar 

  • Cheung IW, Nakayama S, Hsu MN et al (2009) Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J Agric Food Chem 57(19):9234–9242

    CAS  PubMed  Google Scholar 

  • Conesa C, Sánchez L, Rota C et al (2008) Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp Biochem Physiol 150:131–139

    Google Scholar 

  • Davies DT, Law AJR (1977) An improved method for the quantitative fractionation of casein mixture using ion-exchange chromatography. J Dairy Res 44:213–221

    CAS  Google Scholar 

  • De Noni I (2008) Release of beta-casomorphins 5 and 7 during simulated gastro-intestinal digestion of bovine beta-casein variants and milk-based infant formulas. Food Chem 110(4):897–903

    PubMed  Google Scholar 

  • Deak NA, Murphy PA, Johnson LA (2007) Characterization of fractionated soy proteins produced by a new simplified procedure. J Am Oil Chem Soc 84:137–149

    CAS  Google Scholar 

  • Dellafiora L, Paolella S, Dall’Asta C et al (2015) Hybrid in silico/in vitro approach for the identification of angiotensin I converting enzyme inhibitory peptides from Parma dry-cured ham. J Agric Food Chem 63(28):6366–6375

    CAS  PubMed  Google Scholar 

  • Delwiche SR, Pordesimo LO, Panthee DR et al (2007) Assessing glycinin (11S) and β-Conglycinin (7S) fractions of soybean storage protein by near-infrared spectroscopy. J Am Oil Chem Soc 84:1107–1115

    CAS  Google Scholar 

  • Fanciulli G, Azara E, Wood TD et al (2006) Quantification of gluten exorphin A5 in cerebrospinal fluid by liquid chromatography–mass spectrometry. J Chromatogr B 833(2):204–209

    CAS  Google Scholar 

  • Fanciulli G, Azara E, Wood TD et al (2007) Liquid chromatography–mass spectrometry assay for quantification of Gluten Exorphin B5 in cerebrospinal fluid. J Chromatogr B 852(1):485–490

    CAS  Google Scholar 

  • Fox PF, Guiney J (1972) A procedure for the partial fractionation of αS-casein complex. J Dairy Sci 39(1):49–53

    CAS  Google Scholar 

  • Fukudome S, Yoshikawa M (1992) Opioid peptides derived from wheat gluten: their isolation and characterization. FEBS Lett 296:107–111

    CAS  PubMed  Google Scholar 

  • Haileselassie SS, Lee BH, Gibbs BF (1999) Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J Dairy Sci 82(8):1612–1617

    CAS  PubMed  Google Scholar 

  • Hattori M, Miyakawa S, Ohama Y et al (2004) Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides. J Agric Food Chem 52:4546–4553

    CAS  PubMed  Google Scholar 

  • Holton TA, Pollastri G, Shields DC et al (2013) CPPpred: prediction of cell penetrating peptides. Bioinformatics 29(23):3094–3096

    CAS  PubMed  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258(5536):577–580

    CAS  Google Scholar 

  • Janecka A, Fichna J, Janecki T (2004) Opioid receptors and their ligands. Curr Top Med Chem 4:1–17

    CAS  PubMed  Google Scholar 

  • Juan-García A, Font G, Juan C et al (2009) Nanoelectrospray with ion-trap mass spectrometry for the determination of beta-casomorphins in derived milk products. Talanta 80(1):294–306

    PubMed  Google Scholar 

  • Kong XY, Wang J, Tang YJ et al (2012) HPLC analysis of α-lactalbumin and β-lactoglobulin in bovine milk with C4 and C18 column. J Northeast Agric Univ 19:76–82

    Google Scholar 

  • Lacroix IM, Li-Chan EC (2012) Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J Funct Foods 4(2):403–422

    CAS  Google Scholar 

  • Laemmli VK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    CAS  Google Scholar 

  • Loukas S, Varoucha D, Zioudrou C et al (1983) Opioid activities and structures of alpha-casein-derived exorphins. Biochemistry 22:4567–4573

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NF, Farr AC, Randall I (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Nongonierma AB, Mooney C, Shields DC et al (2014) In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPPIV) inhibitors. Peptides 57:43–51

    CAS  PubMed  Google Scholar 

  • Panthee DR, Kwanyuen P, Sams CE et al (2004) Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc 81:1005–1012

    CAS  Google Scholar 

  • Pennington CL, Dufresne CP, Fanciulli G et al (2007) Detection of gluten exorphin B4 and B5 in human blood by liquid chromatography-mass spectrometry/mass spectrometry. Open Spectrosc J 1:9–16

    CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179(4077):1011–1014

    CAS  Google Scholar 

  • Raies MH, Kapila R, Kapila S (2015) Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan fries). Food Chem 1(168):70–79

    Google Scholar 

  • Rizzello CG, Losito I, Gobbetti M et al (2005) Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci 88(7):2348–2360

    CAS  PubMed  Google Scholar 

  • Robinson PS, Streusand JV, Chatfield JM et al (1988) Purification and assay of RuBisCo activase from leaves. Plant Physiol 88:1008–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh M, Minami M (1995) Molecular pharmacology of the opioid receptors. Pharm Ther 68:343–364

    CAS  Google Scholar 

  • Schmelzer CE, Schöps R, Ulbrich-Hofmann R et al (2004) Mass spectrometric characterization of peptides derived by peptic cleavage of bovine β-casein. J Chromatogr A 1055(1):87–92

    CAS  PubMed  Google Scholar 

  • Schmelzer CE, Schöps R, Ulbrich-Hofmann R et al (2007) Peptic digestion of β -casein: time course and fate of possible bioactive peptides. J Chromatogr A 1166(1-2):108–115

    CAS  PubMed  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci 72(8):3092–3096

    CAS  PubMed  Google Scholar 

  • Tatham AS, Gilbert SM, Fido RJ et al (2000) Extraction, separation, and purification of wheat gluten proteins and related proteins of Barley, Rye, and Oats. Methods Mol Med 41:55–73

    CAS  PubMed  Google Scholar 

  • Teschemacher H (2003) Opioid receptor ligands derived from food proteins. Curr Pharm Des 9:1331–1344

    CAS  PubMed  Google Scholar 

  • Toelstede S, Hofmann T (2008) Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J Agric Food Chem 56(8):2795–2804

    CAS  PubMed  Google Scholar 

  • Udenigwe CC (2014) Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci Technol 36(2):137–143

    CAS  Google Scholar 

  • Udenigwe CC, Gong M, Wu S (2013) In silico analysis of the large and small subunits of cereal RuBisCo as precursors of cryptic bioactive peptides. Process Biochem 48(11):1794–1799

    CAS  Google Scholar 

  • Van Berkel PHC, Geerts MEJ, Van Veen HA et al (1995) Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide but differ in their susceptibilities towards tryptic proteolysis. Biochem J 312:107–114

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Li D, Xu F et al (2014) Comparison of two methods for the extraction of fractionated rice bran protein. J Chem 51(9):816–827

    Google Scholar 

  • Zioudrou C, Streaty RA, Klee WA (1979) Opioid peptides derived from food proteins. J Biol Chem 254(7):2446–2449

    CAS  PubMed  Google Scholar 

  • Zittle CA, Custer JH (1963) Purification and some of the properties of alpha-casein and kappa-casein. J Dairy Sci 46:1183–1188

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ul Haq, M.R. (2020). Analysis of Food-derived Opioid Peptides. In: Opioid Food Peptides. Springer, Singapore. https://doi.org/10.1007/978-981-15-6102-3_8

Download citation

Publish with us

Policies and ethics