Skip to main content

Structure and Production of Casomorphins

  • Chapter
  • First Online:
Opioid Food Peptides
  • 181 Accesses

Abstract

Casomorphins are bovine and human milk-derived opioid peptides. These are released from casein milk proteins. Among casomorphins, β-casomorphins (BCMs) are the most abundant group of exorphins released from the β-casein of human and bovine milk. Casomorphins differ from each other on the source of milk (bovine/human) and the number and sequence of amino acids. The commonly studied casomorphins include bovine BCM-4, 5, 6, 7, 8 and neocasomorphin-6 and human BCM-4, 5, 7, 8 and α-casomorphin. Among all casomorphins, BCM-7 is the most significant exorphins studied, because it correlates with the incidence of few human illnesses. BCMs have selectivity for all three types of opioid receptors including μ, δ, and κ. These exorphins (except α-casomorphin) act as agonists for all these opioid receptors. Casomorphins are released from the milk casein during gastrointestinal digestion (in vivo), simulated gastrointestinal digestion (in vitro), or fermentation. Reports have established the production of these peptides from various types of milk, cheese samples, infant formulas, and yogurt. The A1/A2 milk hypothesis establishes that BCM-7 is released from only A1 milk of bovines due to the presence of histidine at position 67 of the β-casein. The presence of proline at this position in A2 milk resists such cleavage and hence this exorphin is not produced from this variant of β-casein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antila P, Paakkari I, Järvinen A et al (1991) Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. Int Dairy J 1(4):215–229

    CAS  Google Scholar 

  • Asledottir T, Picariello G, Mamone G (2019) Degradation of β-casomorphin-7 through in vitro gastrointestinal and jejunal brush border membrane digestion. J Dairy Sci 102(10):8622–8629

    CAS  PubMed  Google Scholar 

  • Atlan D, Laloi P, Portalier R (1990) X-prolyl-dipeptidyl aminopeptidase of lactobacillus delbrueckii subsp. bulgaricus: characterization of the enzyme and isolation of deficient mutants. Appl Environ Microbiol 56(7):2174–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boutrou R, Gaudichon C, Dupont D (2013) Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr 97(6):1314–1323

    CAS  PubMed  Google Scholar 

  • Brantl V (1984) Novel opioid peptides derived from human beta-casein: human beta-casomorphins. Eur J Pharmacol 106(1):213–214

    CAS  PubMed  Google Scholar 

  • Brantl V, Teschemacher H (1979) A material with opioid activity in bovine milk and milk products. Naunyn Schmiedebergs Arch Pharmacol 306(3):301–304

    CAS  PubMed  Google Scholar 

  • Brantl V, Teschemacher H, Henschen A et al (1979) Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360(9):1211–1216

    CAS  PubMed  Google Scholar 

  • Brantl V, Teschemacher H, Bläsig J et al (1981) Opioid activities of beta-casomorphins. Life Sci 28(17):1903–1909

    CAS  PubMed  Google Scholar 

  • Cattaneo S, Stuknytė M, Masotti F et al (2017) Protein breakdown and release of β-casomorphins during in vitro gastro-intestinal digestion of sterilized model systems of liquid infant formula. Food Chem 217:476–482

    CAS  PubMed  Google Scholar 

  • Cattaneo S, Pica V, Stuknytė M et al (2020) Effect of protein fortification on heat damage and occurrence of β-casomorphins in undigested donor human milk intended for nutrition of preterm infants. Food Chem 314:126176. https://doi.org/10.1016/j.foodchem.2020.126176

    Article  CAS  PubMed  Google Scholar 

  • Chiba H, Tani F, Yoshikawa M (1989) Opioid antagonist peptides derived from beta-casein. J Dairy Res 56(3):363–366

    CAS  PubMed  Google Scholar 

  • Cieslinska A, Kaminski S, Kostyra E et al (2007) β-Casomorphin-7 in raw and hydrolyzed milk derived from cows of alternative β-casein genotypes. Milchwissenschaft 62:125–127

    CAS  Google Scholar 

  • Cieślińska A, Kostyra E, Kostyra H et al (2012) Milk from cows of different β-casein genotypes as a source of β-casomorphin-7. Int J Food Sci Nutr 63(4):426–430

    PubMed  Google Scholar 

  • Courtin P, Monnet V, Rul F (2002) Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 148(11):3413–3421

    CAS  PubMed  Google Scholar 

  • De Noni I, Cattaneo S (2010) Occurrence of b-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastro-intestinal digestion. Food Chem 119:560–566

    Google Scholar 

  • Donkor ON, Henriksson A, Singh TK et al (2007) ACE inhibitory activity of probiotic yoghurt. Int Dairy J 17(11):1321–1331

    CAS  Google Scholar 

  • El-Zahar K, Chobert JM, Sitohy M et al (2003) Proteolytic degradation of ewe milk proteins during fermentation of yoghurts and storage. Food/Nahrung 47(3):199–206

    CAS  PubMed  Google Scholar 

  • European Food Safety Authority (EFSA) (2009) Review of the potential health impact of β-casomorphins and related peptides. Sci Rep 231:1–107

    Google Scholar 

  • Farvin KS, Baron CP, Nielsen NS et al (2010) Antioxidant activity of yoghurt peptides: part 2– characterisation of peptide fractions. Food Chem 123(4):1090–1097

    Google Scholar 

  • Garg S, Nurgali K, Mishra V (2016) Food proteins as source of opioid peptides-A review. Curr Med Chem 23(9):893–910

    CAS  PubMed  Google Scholar 

  • Gaucher I, Mollé D, Gagnaire V et al (2008) Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocoll 22(1):130–143

    CAS  Google Scholar 

  • Gaucheron F, Molle D, Briard V et al (1999) Identification of low molar mass peptides released during sterilization of milk. Int Dairy J 9(8):515–521

    CAS  Google Scholar 

  • Gobbetti M, Ferranti P, Smacchi E et al (2000) Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl Environ Microbiol 66(9):3898–3904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbetti M, Stepaniak L, De Angelis M et al (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci Nutr 42(3):223–239

    CAS  PubMed  Google Scholar 

  • Haileselassie SS, Lee BH, Gibbs BF (1999) Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J Dairy Sci 82(8):1612–1617

    CAS  PubMed  Google Scholar 

  • Hattem HE, Manal AN, Hanaa SS et al (2011) A study on the effect of thermal treatment on composition and some properties of camel milk. J Brew Distill 2(4):51–55

    CAS  Google Scholar 

  • Hayaloglu A, Deegan K, McSweeney P (2010) Effect of milk pasteurization and curd scalding temperature on proteolysis in Malatya, a Halloumi type cheese. Dairy Sci Technol 90(1):99–109

    CAS  Google Scholar 

  • Hazum E, Sabatka JJ, Chang KJ et al (1981) Morphine in cow and human milk: could dietary morphine constitute a ligand for specific morphine (mu) receptors? Science 213(4511):1010–1012

    CAS  PubMed  Google Scholar 

  • Henschen A, Lottspeich F, Brantl V (1979) Novel opioid peptides derived from casein (beta-casomorphins). II. Structure of active components from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360(9):1217–1224

    CAS  PubMed  Google Scholar 

  • Jarmolowska B, Kostyra E, Krawczuk S et al (1999) β-Casomorphin-7 isolated from brie cheese. J Sci Food Agric 79:1788–1792

    CAS  Google Scholar 

  • Jarmolowska B, Szlapka-Sienkiewicz E, Kostyra E et al (2007) Opioid activity of humana formula for newborns. J Sci Food Agric 87(12):2247–2250

    CAS  Google Scholar 

  • Jinsmaa Y, Yoshikawa M (1999) Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein. Peptides 20(8):957–962

    CAS  PubMed  Google Scholar 

  • Kaminski S, Cieoelinska A, Kostyra E (2007) Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet 48(3):189–198

    PubMed  Google Scholar 

  • Koch G, Wiedemann K, Teschemacher H (1985) Opioid activities of human β-casomorphins. Naunyn Schmiedeberg’s Arch Pharmacol 331(4):351–354

    CAS  Google Scholar 

  • Kostyra E, Sienkiewicz-Szapka E, Jarmolowska B et al (2004) Opioid peptides derived from milk proteins. Pol J Food Nutr 13(54):25–35

    CAS  Google Scholar 

  • Krasaekoopt W (2003) Yogurt from UHT milk: a review. Aust J Dairy Technol 58(1):26

    CAS  Google Scholar 

  • Kunda PB, Benavente F, Catala-Clariana S et al (2012) Identification of bioactive peptides in a functional yogurt by micro liquid chromatography time-of-flight mass spectrometry assisted by retention time prediction. J Chromatogr A 1229:121–128

    CAS  PubMed  Google Scholar 

  • Lotfi B (2004) Optimization study for the production of an opioid-like preparation from bovine casein by mild acidic hydrolysis. Int Dairy J 14(6):535–539

    Google Scholar 

  • Lottspeich F, Henschen A, Brantl V (1980) Novel opioid peptides derived from casein (beta-casomorphins). III. Synthetic peptides corresponding to components from bovine casein peptone. Hoppe Seylers Z Physiol Chem 361(12):1835–1839

    CAS  PubMed  Google Scholar 

  • McSweeney PLH (2004) Biochemistry of cheese ripening. Int J Dairy Technol 57(2–3):127–144

    CAS  Google Scholar 

  • Meisel H, FitzGerald RJ (2000) Opioid peptides encrypted in intact milk protein sequences. Br J Nutr 84(1):27–31

    Google Scholar 

  • Meltretter J, Schmidt A, Humeny A et al (2008) Analysis of the peptide profile of milk and its changes during thermal treatment and storage. J Agr Food Chem 56(9):2899–2906

    CAS  Google Scholar 

  • Muehlenkamp MR, Warthesen JJ (1996) Beta-casomorphins: analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp Cremoris. J Dairy Sci 79(1):20–26

    CAS  PubMed  Google Scholar 

  • Napoli A, Aiello D, Donna D et al (2007) Exploitation of endogenous protease activity in raw mastitic milk by MALDI-TOF/TOF. Anal Chem 79(15):5941–5948

    CAS  PubMed  Google Scholar 

  • Nguyen DD, Busetti F, Johnson SK et al (2018) Degradation of β-casomorphins and identification of degradation products during yoghurt processing using liquid chromatography coupled with high resolution mass spectrometry. Food Res Int 106:98–104

    CAS  PubMed  Google Scholar 

  • Nielsen MS, Martinussen T, Flambard B et al (2009) Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int Dairy J 19(3):155–165

    CAS  Google Scholar 

  • Papadimitriou CG, Vafopoulou-Mastrojiannaki A, Silva SV et al (2007) Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem 105(2):647–656

    CAS  Google Scholar 

  • Raies MH, Kapila R, Kapila S (2015) Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan fries). Food Chem 1(168):70–79

    Google Scholar 

  • Rizzello CG, Losito I, Gobbetti M et al (2005) Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci 88(7):2348–2360

    CAS  PubMed  Google Scholar 

  • Robinson RK (1995) A colour guide to cheese and fermented milks. Chapman and Hall, London

    Google Scholar 

  • Sakurai T, Yamada A, Hashikura N et al (2018) Degradation of food-derived opioid peptides by bifidobacteria. Benef Microbes 9(4):675–682

    CAS  PubMed  Google Scholar 

  • Schieber A, Brückner H (2000) Characterization of oligo-and polypeptides isolated from yoghurt. Eur Food Res Technol 210(5):310–313

    CAS  Google Scholar 

  • Sienkiewicz-Szłapkaa E, Jarmołowskaa B, Krawczuk S et al (2009) Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int Dairy J 19(4):258–263

    Google Scholar 

  • Smacchi E, Gobbetti M (1998) Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme. Enzym Microb Technol 22(8):687–694

    CAS  Google Scholar 

  • Stepaniak L, Fox PF, Sorhaug T et al (1995) Effect of peptides from the sequence 58-72 of beta-casein on the activity of endopeptidase, aminopeptidase, and X prolyl-dipeptidyl aminopeptidase from Lactococcus Lactis ssp. Lactis MG1363. J Agric Food Chem 43(3):849–853

    CAS  Google Scholar 

  • Tamime AY, Robinson RK (1999) Yoghurt: science and technology. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Teschemacher H, Koch G (1991) Opioids in the milk. Endocrine Regul 25:147–150

    CAS  Google Scholar 

  • Teschemacher H, Koch G, Brantl V (1997) Milk protein-derived opioid receptor ligands. Biopolymers 43(2):99–117

    CAS  PubMed  Google Scholar 

  • Toelstede S, Hofmann T (2008) Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J Agric Food Chem 56(8):2795–2804

    CAS  PubMed  Google Scholar 

  • Zioudrou C, Streaty RA, Klee WA (1979) Opioid peptides derived from food proteins. J Biol Chem 254(7):2446–2449

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ul Haq, M.R. (2020). Structure and Production of Casomorphins. In: Opioid Food Peptides. Springer, Singapore. https://doi.org/10.1007/978-981-15-6102-3_2

Download citation

Publish with us

Policies and ethics