Skip to main content

Study of Effects of Water Inlet Temperature and Flow Rate on the Performance of Rotating Packed Bed

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Advances in Energy Research

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1025 Accesses

Abstract

The study of gas–liquid contacting devices like rotating packed bed (RPB) gained impetus not only due to their promising capacity for volume reduction up to 2–3 order in magnitude but also for process intensification among the participating fluids through the packing. However, the thermal transfer phenomenon involved between the interacting fluids flowing in counter-current direction, due to centrifugal acceleration inside the RPB, is hard for discernment from experimental perspective alone. For this reason, CFD simulation has been undertaken in the present work to explore the effects of water inlet temperature and flow rate on the pressure, velocity, and temperature distribution inside the RPB domain. This communication aims toward achieving rigorous understanding of the multi-physics involved in the thermal process intensification pertaining to the RPB using air–water system. The heat transfer rate results bearing futuristic vision for replacement of fills structure in giant and voluminous conventional cooling towers using compact and efficient rotating packed beds are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

k [J/kg]:

Turbulence kinetic energy

P [N/m2]:

Pressure

Gk [m2/s2]:

Generation of Turbulence kinetic energy due to mean velocity gradients

Gb [m2/s2]:

Generation of Turbulence kinetic energy due to buoyancy

U [m/s]:

Stream-wise velocity

x [m]:

Cartesian axis direction

α [m2/s]:

Thermal diffusivity

ε [m2/s3]:

Turbulence dissipation rate

ρ [kg/m3]:

Physical density

τ [N/m2]:

Stress tensor

μ [N.s/m2]:

Molecular viscosity

b :

Buoyancy

eff:

Effective expression

i, j :

Component in Cartesian direction

References

  1. Ramshaw, C., Mallinson, R.H.: Mass transfer process, U.S. Patent (1981)

    Google Scholar 

  2. Kumar, M.P., Rao, D.P.: Studies on a high-gravity gas-liquid contactor. Ind. Eng. Chem. Res. 29, 917–920 (1990). https://doi.org/10.1021/ie00101a031

    Article  Google Scholar 

  3. Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., Musa, N.M.: Process intensification for post-combustion CO2 capture with chemical absorption: a critical review. Appl. Energy 158, 275–291 (2015). https://doi.org/10.1016/j.apenergy.2015.08.083

    Article  Google Scholar 

  4. Liu, W., Chu, G., Li, S., Bai, S., Luo, Y., Sun, B.: Preparation of lithium carbonate by thermal decomposition in a rotating packed bed reactor. Chem Eng. J. 1–7 (2018). https://doi.org/10.1016/j.cej.2018.09.090

  5. Liu, Z., Liang, F., Liu, Y.: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed. Appl. Therm. Eng. 140, 95–101 (2018). https://doi.org/10.1016/j.applthermaleng.2018.05.029

    Article  Google Scholar 

  6. Gu, Y., Zhang, X.: A proposed hyper-gravity liquid desiccant dehumidification system and experimental verification. Appl. Therm. Eng. 2019(113879), 1–9 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113871

  7. Li, W., Song, B., Li, X., Liu, Y.: Modelling of vacuum distillation in a rotating packed bed by Aspen. Appl. Therm. Eng. 117, 322–329 (2017). https://doi.org/10.1016/j.applthermaleng.2017.01.046

    Article  Google Scholar 

  8. Li, W., Yan, J., Yan, Z., Song, Y., Jiao, W., Qi, G., et al.: Adsorption of phenol by activated carbon in rotating packed bed: Experiment and modeling. Appl. Therm. Eng. 142, 760–766 (2018). https://doi.org/10.1016/j.applthermaleng.2018.07.051

    Article  Google Scholar 

  9. Tung, H.H., Mah, R.S.H.: Modeling liquid mass transfer in HiGee separation process. Chem. Eng. Commun. 39, 147–153 (1985). https://doi.org/10.1080/00986448508911667

    Article  Google Scholar 

  10. Chen, J.: The recent developments in the HiGee technology. In: Presented at the GPE-EPIC Conference, Venice, Italy (2009)

    Google Scholar 

  11. Li, Y., Yuli, Y., Xuli, Z., Lili, X., Liu, X., Ji, J.: Rotating zigzag bed as trayed HIGEE and its power consumption. Asia-Pacific J Chem Eng 8, 494–506 (2013). https://doi.org/10.1002/apj.1688

    Article  Google Scholar 

  12. Zhang, D., Zhang, P., Zou, H., Chu, G., Wu, W., Zhu, Z., et al.: Application of HIGEE process intensification technology in synthesis of petroleum sulfonate surfactant. Chem. Eng. Process Process Intensif 49, 508–513 (2010). https://doi.org/10.1016/j.cep.2010.03.018

    Article  Google Scholar 

  13. Podbielniak, W.J.: Centrfugal, countercurrent contact apparatus, U.S. Patent (1954)

    Google Scholar 

  14. Siptrott, F.M. Chamber’s Centrifugal Reactor, U. S. Patent, 1969

    Google Scholar 

  15. Brechtelsbaurer, C., Lewis, N., Oxley, P., Ricard, F., Ramshaw, C.: Evaluation of a spinning disc reactor for continuous processing. Org. Process Res. Dev. 5, 65–68 (2001)

    Article  Google Scholar 

  16. Munjal, S., Dudukovic, M.P., Ramachandran, P.: Mass-transfer in rotating packed beds-I: development of gas-liquid and liquid-solid mass-transfer correlations. Chem. Eng. Sci. 44, 2245–56 (1989). https://doi.org/10.1016/0009-2509(89)85159-0

  17. Munjal, S., Dudukovic, M.P., Ramachandran, P.: Mass-transfer in rotating packed beds-II: experimental results and comparison with theory and gravity flow. Chem. Eng. Sci. 44, 2257–68 (1989). https://doi.org/10.1016/0009-2509(89)85160-7

  18. Wang, G.Q., Xu, Z.C., Yu, Y.L., Ji, J.B.: Performance of a rotating zigzag bed—a new HIGEE 47, 2131–9 (2008). https://doi.org/10.1016/j.cep.2007.11.001

  19. Chandra, A., Goswami, P.S., Rao, D.P.: Characteristics of flow in a rotating packed bed (HIGEE) with split packing. Ind. Eng. Chem. Res. 44, 4051–4060 (2005). https://doi.org/10.1021/ie048815u

    Article  Google Scholar 

  20. Burns, J.R., Ramshaw, C.: Process intensification: visual study of liquid maldistribution in rotating packed beds. Chem. Eng. Sci. 51, 1347–1352 (1996). https://doi.org/10.1016/0009-2509(95)00367-3

    Article  Google Scholar 

  21. Guo, K., Guo, F., Feng, Y., Chen, J., Zheng, C., Gardner, N.C.: Synchronous visual and RTD study on liquid flow in rotating packed-bed contractor. Chem. Eng. Sci. 55, 1699–1706 (2000). https://doi.org/10.1016/S0009-2509(99)00369-3

    Article  Google Scholar 

  22. Sandilya, P., Rao, D.P., Sharma, A., Biswas, G.: Gas-Phase mass transfer in a centrifugal contactor. Ind. Eng. Chem. Res. 40, 384–392 (2001). https://doi.org/10.1021/ie0000818

    Article  Google Scholar 

  23. Rao, D.P., Bhowal, A., Goswami, P.S.: Process intensification in rotating packed beds (HIGEE): an appraisal. Ind. Eng. Chem. Res. 43, 1150–1162 (2004). https://doi.org/10.1021/ie030630k

    Article  Google Scholar 

  24. Kevyani, M., Gardner, N.C.: Operating characteristics of rotating beds 1989:48

    Google Scholar 

  25. Llerena-Chavez, H., Larachi, F.: Analysis of flow in rotating packed beds via CFD simulations-dry pressure drop and gas flow maldistribution. Chem. Eng. Sci. 64, 2113–2126 (2009). https://doi.org/10.1016/j.ces.2009.01.019

    Article  Google Scholar 

  26. Saurabh, Murthy, D.S.: Analysis and optimization of thermal characteristics in a rotating packed  bed. Appl. Therm. Eng. 165, 114533 (2020).  https://doi.org/10.1016/j.applthermaleng.2019.114533

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saurabh, Murthy, D.S. (2021). Study of Effects of Water Inlet Temperature and Flow Rate on the Performance of Rotating Packed Bed. In: Bose, M., Modi, A. (eds) Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5955-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5955-6_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5954-9

  • Online ISBN: 978-981-15-5955-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics