Skip to main content

Medicinal Plants and Their Role in Inflammation: A Close Look on Future Drug Discovery

  • Chapter
  • First Online:

Abstract

Inflammation is a salubrious process resulting from a number of perturbances. It plays a protective role in our body and in some conditions engenders some negative effects such conditions include the inflammatory disorders rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, retinitis, multiple sclerosis, psoriasis, and atherosclerosis. For surmounting this quandary, the search for more incipient drugs is very requisite and obligatory, and there are many of phytochemical constituents present in plants which are playing a very paramount role in the treatment of inflammation. The present chapter shows some plant phytochemicals which are having anti-inflammatory activity that has been tested in inflammatory models utilizing the modern scientific techniques. In this chapter, the inflammatory activity of different species of medicinal plants are explained which mainly include Apiaceae, Asteraceae, Berberidaceae, Burseraceae, Caesalpinaceae, Capparidaceae, Chenopodiaceae, Combretaceae, Euphorbiaceae, Lamiaceae, Lauraceae, Moringaceae, Myricaceae, Myrtaceae, Oleaceae, Papaveraceae, Pinaceae, Ranunculaceae, Rutaceae, Sapindaceae, Thymelaeceae, and Verbenaceae. The major chemical constituents present in these anti-inflammatory plant species include azadiradione, flavonol, gallic acid, gentisic acid, kaempferol, nimbin, 3-o-galloyl-(-)-epicatechin-4-benzylthioether, pinene, ricinoleic acid, thujone, and several other important bioactive compounds. These compounds play a significant role in current research and help a lot in developing new formulations for herbal botanicals and ongoing current pharmacological research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

%:

Percentage

i.e.:

That is

μM:

Micromolar

μl:

Microliter

ml:

Milliliter

cm:

Centimeter

kg:

Kilogram

Bcl-xL:

B-cell lymphoma-extra large

BCL2:

B-cell lymphoma 2

COX:

Cyclooxygenase

IL-1:

Interleukin-1

LTC4:

Leukotriene C4

LTB4:

Leukotriene B4

LPS:

Lipopolysaccharide

NSAIDs:

Nonsteroidal anti-inflammatory drugs

NF-Πb:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

p38 MAPK:

p38 mitogen-activated protein kinases kinase

pTEN:

Phosphatase and tensin homolog

PI3K/ATK:

Phosphatidylinositol 3-kinase/protein kinase B

PPAR:

Peroxisome proliferator-activated receptors

PGE2:

Prostaglandin

PGI2:

Prostacyclin

TPA:

Tissue plasminogen activator

TNF-α:

Tumor necrosis factor-A

VEGFR-2:

Vascular endothelial growth factor receptor-2

WHO:

World Health Organization

References

  • Abdul WM, Hajrah NH, Sabir JSM, Al-Garni SM, Sabir MJ, Kabli SA, Saini KS, Bora RS (2018) Therapeutic role of Ricinus communis L. and its bioactive compounds in disease prevention and treatment. Asian Pac J Trop Med 11(3):177. https://doi.org/10.4103/1995-7645.228431

    Article  CAS  Google Scholar 

  • Ahmad M, Prawez S, Sultana M, Raina R, Verma PK, Ahanger AA, Kishore PN (2015) Antidiabetic effect of Sida cordifolia (aqueous extract) on diabetes-induced in Wistar rats using streptozotocin and its phytochemistry. Int J Pharm Res Innov 8:11–22

    Google Scholar 

  • Alex P, Johns B (2015) Compositions comprising non steroidal anti-inflammatory drugs and methods for use thereof. US9084769

    Google Scholar 

  • Allison MC, Howatson AG, Torrance CJ, Lee FD, Russell RI (1992) Gastrointestinal damage associated with the use of nonsteroidal anti inflammatory drugs. N Engl J Med 327(11):749–754. https://doi.org/10.1056/nejm199209103271101

    Article  CAS  PubMed  Google Scholar 

  • Alzohairy MA (2016) Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Alternat Med 2016:1–11. https://doi.org/10.1155/2016/7382506

    Article  Google Scholar 

  • Asmawi MZ, Kankaanranta H, Moilanen E, Vapaatalo H (1993) Anti-inflammatory activities of Emblica officinalis Gaertn leaf extracts. J Pharm Pharmacol 45(6):581–584. https://doi.org/10.1111/j.2042-7158.1993.tb05605.x

    Article  CAS  PubMed  Google Scholar 

  • Benni JM, Jayanthi MK, Suresha RN (2011) Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J Pharm 43(4):393–397. https://doi.org/10.4103/0253-7613.83108

    Article  Google Scholar 

  • Brooks PM, Day RO (2000) COX-2 inhibitors. Med J Aust 173(8):433–436

    Article  CAS  Google Scholar 

  • Chatterjee TK (2005) Polyherbal composition as anti-inflammatory agent. WO2005120529

    Google Scholar 

  • Franzotti EM, Santos CV, Rodrigues HM, Mourao RH, Andrade MR, Antoniolli AR (2000) Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J Ethnopharmacol 72(1–2):273–277

    Article  CAS  Google Scholar 

  • Golini JM (2011) Anti-inflammatory creatine composition comprising acetylated fatty acid. EP2283836

    Google Scholar 

  • Hani Idayu B, Fadzureena J, Mazura MP, Nuziah H, Kaveena K (2009) Anti-inflammatory evaluation of the leaf extracts of Senna occidentalis Linn. Forest Research Institute Malaysia, Kuala Lumpur, pp 296–302

    Google Scholar 

  • Ilango K, Maharajan G, Narasimhan S (2013) Anti-nociceptive and anti-inflammatory activities of Azadirachta indica fruit skin extract and its isolated constituent azadiradione. Nat Prod Res 27(16):1463–1467

    Article  CAS  Google Scholar 

  • Kumari M, Ashok BK, Ravishankar B, Pandya TN, Acharya R (2012) Anti-inflammatory activity of two varieties of Pippali (Piper longum Linn.). AYU 33:307–310. https://doi.org/10.4103/0974-8520.105258

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YX (2005) Herbal compositions for prevention and treatment rheumatic and inflammatory diseases and method of preparing the same. US20050276873

    Google Scholar 

  • Lieberman CJ (1998) Therapeutic herbal composition. US5707631

    Google Scholar 

  • McCarthy DM (1991) Pathogenic mechanisms of gastroduodenal injury: nonsteroidal anti-inflammatory drugs. Curr Opin Gastroenterol 7(6):876–880

    Article  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428. https://doi.org/10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  • Naik MR, Bhattacharya A, Behera R, Agrawal D, Dehury S, Kumar S (2014) Study of anti-inflammatory effect of neem seed oil (Azadirachta indica) on infected albino rats. J Health Res Rev 1:66–69. https://doi.org/10.4103/2394-2010.153880

    Article  Google Scholar 

  • Nash RJ (2016) Anti-inflammatory compounds. US9326977

    Google Scholar 

  • Negi JS, Singh P, Rawat B (2011) Chemical constituents and biological importance of Swertia: a review. Curr Res Chem 3(1):1–15. https://doi.org/10.3923/crc.2011.1.15

    Article  CAS  Google Scholar 

  • Newmark T, Schulick P (2002) Anti-Inflammatory herbal composition and method of use. US6387416

    Google Scholar 

  • Oei BL (1992) Combination of compounds isolated from Curcuma spp. as anti-inflammatory agents. US5120538

    Google Scholar 

  • Ojewole JA (2005) Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 99(1):13–19. https://doi.org/10.1016/j.jep.2005.01.025

    Article  PubMed  Google Scholar 

  • Okoli C, Akah P, Nwafor SV (2003) Anti-inflammatory activity of plants. J Nat Remedies 3(1):1–30

    CAS  Google Scholar 

  • Palhares RM, Gonçalves DM, dos Santos AFBB, Pereira CG, das Graças LBM, Oliveira G (2015) Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS ONE 10(5):e0127866. https://doi.org/10.1371/journal.pone.0127866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plachetka JR (2015) Pharmaceutical compositions for the coordinated delivery of NSAIDs. US9161920

    Google Scholar 

  • Rahmani AH (2015) Cassia fistula Linn: potential candidate in the health management. Pharm Res 7(3):217. https://doi.org/10.4103/0974-8490.157956

    Article  Google Scholar 

  • Rodrigues Silva D, Baroni S, Svidzinski AE, Bersani-Amado CA, Cortez DA (2008) Anti-inflammatory activity of the extract, fractions and amides from the leaves of Piper ovatum Vahl (Piperaceae). J Ethnopharmacol 116(3):569–573

    Article  CAS  Google Scholar 

  • Ruckmani A, Meti V, Vijayashree R, Arunkumar R, Konda VR, Prabhu L, Madhavi E, Devi S (2018) Anti-rheumatoid activity of ethanolic extract of Sesamum indicum seed extract in Freund’s complete adjuvant induced arthritis in Wistar albino rats. J Tradit Complement Med 8(3):377–386

    Article  CAS  Google Scholar 

  • Sen T, Chaudhuri AKN (1991) Antiinflammatory evaluation of a Pluchea indica root extract. J Ethnopharmacol 33(1–2):135–141

    Article  CAS  Google Scholar 

  • Shimoda H, Shan SJ, Tanaka J, Seki A, Seo JW, Kasajima N, Murakami N (2010) Anti-inflammatory properties of red ginger (Zingiber officinale var. Rubra) extract and suppression of nitric oxide production by its constituents. J Med Food 13(1):156–162

    Article  CAS  Google Scholar 

  • Silva RL, De Melo GB, De Melo VA, Antoniolli ÂR, Michellone RP, Zucoloto S, Picinato AM, Cardoso N, Fleury C, Franco F, Mota DA, Castro OD (2006) Effect of the aqueous extract of Sida cordifolia on liver regeneration after partial hepatectomy. Acta Cir Bras 1:37–39

    Article  Google Scholar 

  • Smith WL, Meade EA, Dwitt DL (1994) Pharmacology of prostaglandin endoperoxide synthase isozymes-1 and-2a. Ann N Y Acad Sci 714(1):136–142

    Article  CAS  Google Scholar 

  • Srinithya B, Muthuraman MS (2014) An overview of the biological perspectives of Sida cordifolia Linn. Int J Pharm Pharm Sci 6:15–17

    Google Scholar 

  • Sutradhar RK, Matior Rahman AKM, Ahmad M, Bachar SC, Saha A, Guha SK (2006) A bioactive alkaloid from Sida cordifolia Linn. with analgesic and antiinflammatory activities. Iran J Pharmacol Ther 5:175–178

    Google Scholar 

  • Tomer OS, Glomski P, Borah K (2001) Herbal compositions and their use as anti-inflammatory agents for alleviation of arthritis and gout US6274176

    Google Scholar 

  • Tunón H, Olavsdotter C, Bohlin L (1995) Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J Ethnopharmacol 48(2):61–76

    Article  Google Scholar 

  • Vasudevan M, Gunnam KK, Parle M (2007) Antinociceptive and anti-inflammatory effects of Thespesia populnea bark extract. J Ethnopharmacol 109(2):264–270

    Article  CAS  Google Scholar 

  • Verma S, Ojha S, Raish M (2010) Anti-inflammatory activity of Aconitum heterophyllum on cotton pellet-induced granuloma in rats. J Med Plants Res 4(15):1566–1569

    Google Scholar 

  • Vishal V, Sharma GN, Mukesh G, Ranjan B (2014) A review on some plants having anti-inflammatory activity. J Phytopharmacol 2:214–221

    Google Scholar 

Download references

Acknowledgment

The authors would like to express their utmost gratitude and appreciation to Director, CSIR-Indian Institute of Integrative Medicine, Jammu. We also thank the Department of Science and Technology- India for providing research fellowship to G. Sawhney via fellowship code no. DST/INSPIRE Fellowship/2017/IF170212.

Conflict of Interest

The authors declare that they have no conflicts of interest regarding the publication of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zabeer Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawhney, G., Kaur, S., Bhagat, A., Ahmed, Z. (2020). Medicinal Plants and Their Role in Inflammation: A Close Look on Future Drug Discovery. In: Singh, B. (eds) Botanical Leads for Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-5917-4_7

Download citation

Publish with us

Policies and ethics