Skip to main content

Medicinal Value of High-Altitude Plants of Indian Himalaya

  • Chapter
  • First Online:
Botanical Leads for Drug Discovery

Abstract

Plants are the primary source of the therapeutic needs for mankind since ancient times and capable of growing under extreme conditions. The diversity in ecological growing conditions and also variability in altitude that ranges from 100 to 7500 m above the sea level introduce diverse kinds of medicinal plants in the higher altitude. In Indian Himalayan region, there are a number of medicinal plants growing wildly such as Aconitum heterophyllum, Hippophae rhamnoides, Inula racemosa, Rhodiola rosea, and Sinopodophyllum hexandrum. Aconitum heterophyllum has active alkaloids such as lycoctonine which shows significant activity against Pseudomonas aeruginosa and Salmonella typhi. Analgesic and anti-inflammatory activities are significantly shown by some other alkaloids such as aconitine and mesaconitine derivatives. Inula racemosa contains a large amount of sesquiterpene lactones such as alantolactone and isoalantolactone and a large number of biological activities such as antimalarial, antifungal and hypoglcaemic and Sinopodophyllum hexandrum contains a variety of bioactive molecules such as flavonoids and lignans which possess antioxidant and antiapoptotic potential and hence help in radio-protection. The root of Rhodiola rosea contains more than 140 active constituents, and among them the two most potent are rosavin and salidroside. These constituents help in decreasing stress, improve brain function, reduce symptoms of depression etc. The adverse conditions in higher altitude is due to the presence of ultraviolet (UV) filters, potent antioxidants, free radical quenchers and antifreeze carbohydrates, and the plants growing in such habitat adapt themself to different mechanisms of metabolite synthesis. This is the major reason for the availability of diverse and unique chemical entities in the high-altitude plants. On the other hand, these processes are not shown by plants growing in low altitude. Their biochemical machinery has been able to bear the aggressive climatic conditions by the way of new biosynthetic twists leading to new molecular skeletal, which are absent in the lower region plants. High-altitude plants gain a lot of economic and medicinal importance. The amount and variety of chemical constituents present in high-altitude plants differ from plants growing in lower region, and this attracts researchers to investigate and explore their medicinal applications for human health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALT:

Alanine Amino Transferase

cAMP:

Cyclic Adenosine Monophosphate

GSH:

Glutathione

IHR:

Indian Himalayan Region

LD50:

Lethal Dose

NMR:

Nuclear Magnetic Resonance

SBT:

Sea Buck Thorn

TPA:

Tumour Promoting Agent

UV:

Ultra Violet

WHO:

World Health Organization

References

  • Adamczak A, Gryszczyńska A, Buchwald W (2014) Biometric and phytochemical variability of roseroot (Rhodiola rosea L.) from field cultivation. J Herba Polonica 60:7–14

    Article  Google Scholar 

  • Arora RK, Maheshwari ML, Chandel KPS, Gupta R (1980) Mano (Inula racemosa): little known aromatic plant of Lahaul Valley, India. J Econ Bot 34(2):175–180

    Article  CAS  Google Scholar 

  • Arumugam P, Murugan M, Thangaraj N (2012) Evaluation of anti-inflammatory and analgesic effects of aqueous extract obtained from root powder of Inula racemosa Hook. f. J Med Plants Res 6(14):2801–2806

    Google Scholar 

  • Basu M, Prasad R, Jayamurthy P, Pal Arumughan C, Sawhney RC (2007) Anti-atherogenic effects of Sea buckthorn (Hippophae rhamnoides) seed oil. J Phytomed 14:770–777

    Article  CAS  Google Scholar 

  • Beigh SY, Nowchoo IA, Iqbal M (2008) Cultivation and conservation of Aconitum heterophyllum: a critically endangered medicinal herb of the Northwest Himalayas. J Herbs Spices Med Plants 11(4):47–56

    Article  Google Scholar 

  • Beveridge T, Li TSC, Oomah BD (1999) Sea buckthorn products: manufacture and composition. J Agric Food Chem 47:3480–34884

    Article  CAS  PubMed  Google Scholar 

  • Bhandari P, Rastogi RP (1983) Alloalantolactone, a sesquiterpene lactone from Inula racemosa. Indian J Chem- Sect B Organic Med Chem 22(3):286–287

    Google Scholar 

  • Bhattacharyya D, Hazra S, Banerjee A, Datta R, Kumar D, Chakrabarti S, Chattopadhyay S (2016) Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Mol Biol 92(1–2):1–23

    Article  CAS  PubMed  Google Scholar 

  • Blumthaler M, Webb AR, Seckmeyer G, Bais AF, Huber MB, Mayern B (1994) Simultaneous spectro-radiometry: a study of solar UV irradiance at two altitudes. Geophys Res Lett 21(25):2805–2808

    Article  Google Scholar 

  • Bokadia MM, Macleod AJ, Mehta SC, Patel BK, Patel H (1986) The essential oil of Inula racemosa. J Phytochem 25:2887–2888

    Article  CAS  Google Scholar 

  • Booker A, Jalil B, Frommenwiler D (2016) The authenticity and quality of Rhodiola rosea products. J Phytomed 23(7):754–762

    Article  CAS  Google Scholar 

  • Bykov VA, Zapesochnaya GG, Kurkin VA (1999) Traditional and biotechnological aspects of obtaining medicinal preparations from Rhodiola rosea L. (A review). J Pharm Chem 33:29–40

    Article  CAS  Google Scholar 

  • Cakir A (2004) Essential oil and fatty acid composition of the fruit of Hippophae rhamnoides L. (sea buckthorn) and Myrtus communis L. from Turkey. J Biochem Syst Ecol 32:809–816

    Article  CAS  Google Scholar 

  • Chatterjee R (1952) Indian podophyllum. Econ Bot 6:342–354

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2001) Development of suspension culture of Podophyllum hexandrum for production of podophyllotoxin. J Biotechnol Lett 23(24):2063–2066

    Article  CAS  Google Scholar 

  • Chawla R, Aror R, Singh S, Sagar RK, Sharma RK, Kumar R, Sharma A, Gupta ML, Singh S, Prasad J, Khan HA, Swaroop A, Sinha AK, Gupta AK, Tripath RP, Ahuja PS (2007) Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. J Med Food 10:101–109

    Article  CAS  PubMed  Google Scholar 

  • Csupor D, Wenzig EM, Wolkart K, Zupko I, Hohmann J, Bauer R (2009) Qualitative and quantitative analysis of aconitine-type and lipoalkaloids of Aconitum carmichaelii roots. J Chromarogr A 1216(11):2079–2086

    Article  CAS  Google Scholar 

  • Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H (2000) Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. J Phytomed 5:365–371

    Article  Google Scholar 

  • Enescu CM (2014) Sea buckthorn: a species with a variety of uses, especially in land reclamation. J Dendrobiol 72:41–46

    Article  Google Scholar 

  • Fallahzadeh A, Mohammadi S (2016) An investigation of the antinociceptive and anti-inflammatory effects of hydroalcoholic extract of Inula helenium on male rats. J Babol Univ Med Sci 18(12):57–63

    Google Scholar 

  • Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. J Bull World Health Organization 63(6):965–981

    CAS  Google Scholar 

  • Gao ZL, Gu XH, Cheng FT, Jiang FH (2003) Effect of Sea buckthorn on liver fibrosis: a clinical study. World J Gastroenterol 9:1615–1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Geetha S, Sai Ram M, Singh V, Ilavazhagan G, Sawhney RC (2002a) Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides)-an in vitro study. J Ethnopharmacol 79(3):373–378

    Article  CAS  PubMed  Google Scholar 

  • Geetha S, Sai Ram M, Singh V, Ilavazhagan G, Sawhney RC (2002b) Effect of sea buckthorn against sodium nitroprusside induced oxidative stress in murine macrophages. Biomed Pharmacother 56:463–467

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekaran D, Reddy C, Jaiprakash B, Narayanan N, Kiran Y, Elizabeth H (2012) Adaptogenic activity of siddha medicinal plant Inula racemosa. Int J Biol Pharm Allied Sci 1(6):870–880

    Google Scholar 

  • Goel HC, Prasad J, Singh Sagar R, Prem Kuma I, Sinha AK (2002) Radioprotection by a herbal preparation of Hippophae rhamnoides RH-3, against whole body lethal irradiation in mice. J Phytomed 9:135–143

    Article  Google Scholar 

  • Guliyev VB, Gul M, Yildirim A (2004) Hippophae rhamnoides L., chromatographic methods to determine chemical composition, use in traditional medicine and pharmacological effect. J Chromatogr B 812:291–207

    Article  CAS  Google Scholar 

  • Gupta R, Flora SJ (2006) Protective effects of fruit extracts of Hippophae rhamnoides L. against arsenic toxicity in Swiss albino mice. J Human Exp Toxicol 25:285–295

    Article  CAS  Google Scholar 

  • Han X, Yin L, Xu L, Wang X, Peng J (2010) Simultaneous determination of ten active components in Chinese medicine huang-lianshang-qing tablets by high-performance liquid chromatography coupled with photodiode array detection. J Anal Lett 43:545–556

    Article  CAS  Google Scholar 

  • Hernández SA, Pérez LV, Zubeldia JM, Jiménez RM (2014) Rhodiola rosea root extract protects skeletal muscle cells against chemically induced oxidative stress by modulating heat shock protein 70 (HSP70) expression. J Phytother Res 28(4):623–628

    Article  Google Scholar 

  • Jike Z, Xiaoming Z (1992) Progress of study on Frankia in nodules of Seabuckthorn. Hippocampus 2:4–10

    Google Scholar 

  • Kala CP (2000) Status and conservation of rare and endangered medicinal plant in the Indian Trans-Himalaya. Biological Conservation plants in therapy. J Bull World Health Organisation 63(6):965–981

    Google Scholar 

  • Kala CP (2005a) Health traditions of Buddhist community and role of Amchis in trans-Himalayan region of India. J Curr Sci 89:1331–1338

    Google Scholar 

  • Kala CP (2005b) Indigenous uses, population density and conservation of threatened medicinal plants in the protected areas of Indian Himalaya. J Conserv Biol 19(2):368–378

    Article  Google Scholar 

  • Kalsi P, Goyal R, Talwar K, Chhabra B (1988) Epoxy alantolides: isoinunal-a new potent plant growth regulator from Inula racemosa. J Phytochem 27(7):2079–2081

    Article  CAS  Google Scholar 

  • Kalsi S, Goyal R, Talwar K, Chhabra B (1989) Stereostructures of two biologically active sesquiterpene lactones from Inula racemosa. J Phytochem 28(8):2093–2096

    Article  CAS  Google Scholar 

  • Kato K, Kanayama Y, Ohkawa W, Kanahama K (2007) Nitrogen fixation in seabuckthorn (Hippophae rhamnoides L.) root nodules and effect of nitrate on nitrogenase activity. J Jpn Soc Hortic Sci 76:185–190

    Article  CAS  Google Scholar 

  • Ken Y, Susumu K, Kenji K, Kumiko G (2009) Anti-tumor promoters phenolics and triterpenoid from Hippophae rhamnoides. J Fitoterapia 80(3):164–167

    Article  CAS  Google Scholar 

  • Kharkwal AC, Kushwaha R, Prakash O, Ogra RK, Bhattacharya A, Nagar PK, Ahuja PS (2008) An efficient method of propagation of Podophyllum hexandrum: an endangered medicinal plant of the Western Himalayas under ex situ conditions. J Nat Med 62(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Yamada K, Murata T, Hasegawa T, Takano F, Koga K, Fushiya S, Batkhuu J, Yoshizaki F (2008) Constituents of Rhodiola rosea showing inhibitory effect on lipase activity in mouse plasma and alimentary canal. Planta Med 74(14):1716–1719

    Article  CAS  PubMed  Google Scholar 

  • Konda VGR, Madhavi E, Prabhu L (2013) Evaluation of hepatoprotective activity of ethanolic extract of Aconitum heterophyllum root in paracetamol induced liver toxicity. Int J Pharm Bio Sci 4(4):714–721

    Google Scholar 

  • Kumar J, Dhillon H (2015) TLC profiling and phytochemical screening of Podophyllum hexandrum Royle – an endangered medicinal plant. Int J Farm Sci 5(1):56–61

    CAS  Google Scholar 

  • Kumar PI, Samanta N, Goel HC (2002) Modulation of chromatin organization by RH-3, a preparation of Hippophae rhamnoides, a possible role in radioprotection. J Mol Cell Biochem 238:1–9

    Article  Google Scholar 

  • Kwon HJ, Ryu YB, Jeong HJ, Kim JH (2009) Rhodiosin, an antioxidant flavonol glycoside from Rhodiola rosea. J Korean Soc Appl Biol Chem 52:486–492

    Article  CAS  Google Scholar 

  • Lata H, Moraes RM, Bertoni B, Pereira AMS (2010) In-vitro germplasm conservation of Podophyllum peltatum L. under slow growth conditions. In Vitro Cell Dev Biol Plant 46:22–27

    Article  Google Scholar 

  • Lazarova MB, Petkov VD, Markovska VL, Petkov VV, Mosharrof A (1986) Effects of meclofenoxate and extr. Rhodiolae rosea L on electroconvulsive shock-impaired learning and memory in rats. Methods Findings Exp Clin Pharmacol 8(9):547–552

    CAS  Google Scholar 

  • Lokhande PD, Gawai KR, Kodam KM, Kuchekar BS, Chabukswar AR, Jagdale S (2007) Antibacterial activity of isolated constituents and extract of roots of Inula racemosa. J Med Plant 1:7–12

    Article  CAS  Google Scholar 

  • Mahmood ZA, Sualeh M, Mahmood SBZ, Karim MA (2010) Herbal treatment for cardiovascular disease. The evidence based therapy. Pak J Pharm Sci 23:119–124

    PubMed  Google Scholar 

  • Miller AL (1998) Botanical influences on cardiovascular disease. J Altern Med 3:422–431

    CAS  Google Scholar 

  • Ming DS, Hillhouse BJ, Guns ES (2005) Bioactive compounds from Rhodiola rosea (Crassulaceae). J Phytother Res 9:740–743

    Article  CAS  Google Scholar 

  • Miyazawa M, Fukuyama M, Yoshio K, Kato T, Ishikawa Y (1999) Biologically active components against Drosophila melanogaster from Podophyllum hexandrum. J Agric Food Chem 47:5108–5110

    Article  CAS  PubMed  Google Scholar 

  • Mounia G, Zhen-Zhou G, Lu-Yong Z (2012) Podophyllotoxin, a medicinal agent of plant origin: past, present and future. Chin J Nat Med 10(3):161–169

    Article  CAS  Google Scholar 

  • Olsen CS, Larsen HO (2003) Alpine medicinal plant trade and Himalayan mountain livelihood strategies. Geogr J 169:243–254

    Article  Google Scholar 

  • Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea), traditional use, chemical composition, pharmacology and clinical efficacy. J Phytomed 17(7):481–493

    Article  CAS  Google Scholar 

  • Parvaiz AW, Kursheed AG, Irshad AN, Wafai BA (2006) Phenological episode and reproductive strategies of Inula racemosa (Asteraceae)- a critically endangered medicinal herb of western Himalayas. J Int Bot 2:388–394

    Article  Google Scholar 

  • Petkov VD, Stancheva SL, Tocuschieva L, Petkov VV (1990) Changes in brain biogenic monoamines induced by the nootropic drugs adafenoxate and meclofenoxate and by citicholine (experiments on rats). Gen Pharmacol 21(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Philipson MN (1990) A symptomless endophyte of ryegrass (Lolium perenne) that spores on its host a light microscope study. N Z J Bot 27:513–519

    Article  Google Scholar 

  • Pintea A, Varga A, Stepnowski P, Socaciu C, Culea M, Diehl HA (2005) Chromatographic analysis of carotenol fatty acid esters in Physalis alkekengi and Hippophae rhamnoides. J Phytochem Analysis 16:188–195

    Article  CAS  Google Scholar 

  • Platikanov S, Evstatieva L (2008) Introduction of wild golden root (Rhodiola rosea L.) as a potential economic crop in Bulgaria. J Econ Bot 62(4):621–627

    Article  Google Scholar 

  • Prakash H, Ali A, Bala M, Goel HC (2005) Anti-inflammatory effects of Podophyllum hexandrum (RP-1) against lipopolysaccharides indu. J Pharm Sci 8:107–144

    Google Scholar 

  • Rajakrishnan R, Lekshmi R, Samuel D (2016) Analytical standards for the root tubers of ativisha - Aconitum heterophyllum wall. Ex Royle. Int J Sci Res Publ 6(5):531–534

    Google Scholar 

  • Rajkumar S, Ahuja PS (2010) Developmental adaptation of leaves in Podophyllum hexandrum for effective pollination and dispersal. J Curr Sci 99:1518–1519

    Google Scholar 

  • Ravindranath K, Raghavan R, Paknikar S, Trivedi G, Bhattacharyya S (1978) Structure and stereochemistry of inunolide, dihydroinunolide and neoalantolactone. Indian J Chem- Sect B Organic Med Chem 16(1):27–31

    Google Scholar 

  • Rousi A (1971) The genus Hippophae L. A taxonomic study. J Ann Bot Fennici 8:177–227

    Google Scholar 

  • Ruan A, Mi H, Meng Z, Lu Z (2003) Protective effects of sea buckthorn seed oil on mouse injury induced by sulfur dioxide inhalation. J Inhal Toxicol 15:1053–1058

    Article  CAS  Google Scholar 

  • Rudkowska I, AbuMweis SS, Nicolle C, Jones PJ (2008) Cholesterol-lowering efficacy of plant sterols in low-fat yogurt consumed as a snack or with a meal. J Am Coll Nutr 27(5):588–595

    Article  CAS  PubMed  Google Scholar 

  • Saggu S, Kumar R (2007a) Modulatory effect of sea buckthorn leaf extract on oxidative stress parameters in rats during exposure to cold, hypoxia and restraint (C–H–R) stress and post stress recovery. J Pharm Pharmacol 59:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Saggu S, Kumar R (2007b) Possible mechanism of adaptogenic activity of sea buckthorn (Hippophae rhamnoides) during exposure to cold, hypoxia and restraint (C–H–R) stress induced hypothermia and post stress recovery in rats. J Food Chem Toxicol 45:2426–2433

    Article  CAS  Google Scholar 

  • Saggu S, Divekar HM, Gupta V, Sawhney RC, Banerjee PK, Kumar R (2007) Adaptogenic and safety evaluation of sea buckthorn (Hippophae rhamnoides) leaf extract: a dose dependent study. J Food Chem Toxicol 45:609–617

    Article  CAS  Google Scholar 

  • Schmidt J, Muller E, Fronczek FR (2001) New Allo-cedrane type sesquiterpene hemiketals and further sesquiterpene lactones from fruits of Illicium floridanum. J Nat Prod 64(4):411–414

    Article  CAS  PubMed  Google Scholar 

  • Shang MY, Xu GJ, Xu LS, Li P (1994) Herbalogical study of Chinese drug guijiu and xiaoyelian. Chin J Chin Mater Med 19:451–453

    CAS  Google Scholar 

  • Shishodia S, Harikumar KB, Dass S, Ramawat KG, Aggarwal BB (2008) The guggul for chronic diseases: ancient medicine, modern targets. J Anticancer Res 28:3647–3664

    CAS  Google Scholar 

  • Singh K, Saloni S, Shalini (2015a) Phytochemical screening and TLC profiling of different extracts of leaves, roots and stem of Aconitum heterophylluma rare medicinal plant of Himalayan region. Int J Univ Pharm Biosci 6(2):194–200

    Google Scholar 

  • Singh K, Saloni S, Shalini (2015b) Different extracts of leaves, roots and stem of Aconitum heterophyllum a rare medicinal plant of Himalayan region. Int J Univ Pharm Biosci 6(2):194–200

    Google Scholar 

  • Skopińska RE, Malinowski M, Wasiutyński, Sommer E, Furmanowa M, Mazurkiewicz M, Siwicki AK (2008) The influence of Rhodiola quadrifida 50% hydro-alcoholic extract and salidroside on tumor-induced angiogenesis in mice. Pol J Vet Sci 11(2):97–104

    Google Scholar 

  • Spring O, Zipper R, Reeb S, Vogler B, DaCosta FB (2001) Sesquiterpene lactones and a myoinositol from glandular trichomes of Viguiera quinqueremis (Heliantheae; Asteraceae). J Phytochem 57:267–272

    Article  CAS  Google Scholar 

  • Srivastava S, Gupta PP, Prasad R, Dixit KS, Palit G, Ali B, Misra G, Saxena RC (1999) Evaluation of antiallergic activity (type I hypersensitivity) of Inula racemosa in rats. Indian J Physiol Pharmacol 43:235–241

    CAS  PubMed  Google Scholar 

  • Stobdan T, Angchuk D, Singh SB (2008) Seabuckthorn: an emerging storehouse for researchers in India. J Curr Sci 94:1236–1237

    Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1–11

    Article  Google Scholar 

  • Suleyman H, Demirezer LO, Buyukokuroglu ME, Akcay MF, Gepdiremen A, Banoglu Z, Gocer F (2001) Antiulcerogenic effect of Hippophae rhamnoides. J Phytother Res 33:77–81

    Google Scholar 

  • Thorat S, Dahanukar S (1991) Can we dispense with Ayurvedic samskaras? J Postgrad Med 3:157–159

    Google Scholar 

  • Titomanlio F, Perfumi M, Mattioli L (2014) Rhodiola rosea L. extract and its active compound salidroside antagonized both induction and reinstatement of nicotine place preference in mice. J Psychopharmacol 231(10):2077–2086

    Article  CAS  Google Scholar 

  • Tom B, Thomas SC, Allen S (2009) Sea buckthorn products: manufacture and composition. J Agric Food Chem 47(9):3480–3488

    Google Scholar 

  • Tripathi SN, Upadhyaya BN, Gupta VK (1984) Beneficial effects of Inula racemosa in angina pectoris. Indian J Physiol Pharmacol 28:73–75

    CAS  PubMed  Google Scholar 

  • Tulsawani (2010) Ninety day repeated gavage administration of Hipphophae rhamnoides extract in rats. J Food Chem Toxicol 48:2483–2489

    Article  CAS  Google Scholar 

  • Upadhyay NK, Kumar R, Mandotra SK, Meena RN, Siddiqui MS, Sawhney RC, Gupta A (2009) Safety and wound healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil in experimental rats. J Food Chem Toxicol 47:1146–1153

    Article  CAS  Google Scholar 

  • Vadnere GP, Gaud RS, Singhai AK, Somani RS (2009) Effect of Inula racemosa root extract on various aspects of asthma. J Pharmacol online 2:84–94

    Google Scholar 

  • Vijayaraghavan R, Gautam A, Kumar O, Pant S, Sharm M, Singh S, Satish Kumar HT, Singh AK, Nivsarkar M, Kaushik MP, Sawhney RC, Chaurasia OP, Prasad GBKS (2006) Protective effect of ethanolic and water extracts of sea buckthorn (Hippophae rhamnoides L.) against the toxic effects of mustard gas. Indian J Exp Biol 44:821–831

    CAS  PubMed  Google Scholar 

  • Wani SA, Shah KW, Ahmad MA (2013) Antifungal activities of methanolic extracts of Podophyllum hexandrum and Rheum emodi against human pathogenic fungal strains. Int J Pharm Bio Sci 19(2):56–59

    CAS  Google Scholar 

  • Xie YS, Fields PG, Isman MB (1995) Repellency and toxicity of azadirachtin and neem concentrates to three stored-product beetles. J Econ Ecol 88:1024–1031

    CAS  Google Scholar 

  • Xie Y, Jiang ZH, Zhou H, Xu HX, Liu L (2005) Simultaneous determination of six Aconitum alkaloids in proprietary Chinese by high-performance liquid chromatography. J Chromatogr A 1093(23):195–203

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Yang B, Dong Y, Wang B, Wang J, Kallio PH (2002) Effects of sea buckthorn (Hippophae rhamnoides L.) seed and pulp oils on experimental models of gastric ulcer in rats. J Fitoterapia 73:644–650

    Article  CAS  Google Scholar 

  • Xu LW, Shi YP (2011) Sesquiterpenoid from Inula racemosa. J Asian Nat Prod Res 13:570–574

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Ma SB, Hu CQ, Yang CY, Hu ZH (1997) The floral biology and its evolutionary significance of Sinopodophyllum hexandrum (Royle) Ying (Berberidaceae). J Wuhan Bot Res 15:223–227

    Google Scholar 

  • Yadav V, Sharma S, Rao V, Yadav R, Radhakrishna A (2016) Assessment of morphological and biochemical diversity in sea buckthorn (Hippophae salicifolia D.Don.) populations of Indian Central Himalaya. Proc Natl Acad Sci Sect B Sci J Biol Sci 86:351–357

    CAS  Google Scholar 

  • Yang B, Karlsson RM, Oksman PH, Kallio HP (2001) Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: identification and effects of different origins and harvesting times. J Agric Food Chem 49:5620–5629

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Laaksonen O, Kallio H, Yang B (2016) Proanthocyanidins in sea buckthorn (Hippophae rhamnoides L.) berries of different origins with special reference to the influence of genetic background and growth location. J Agric Food Chem 64:1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Zeb A (2004) Chemical and nutritional constituents of sea buckthorn juice. Pak J Nutr 3:99–106

    Article  Google Scholar 

  • Zhao Y, Wu F (1997) Sea buckthorn flavonoids and their medical value. Hippophae 10(1):39–31

    Google Scholar 

  • Zubarev YA (2008) Commercial cultivation of sea buckthorn in Western Siberia, Russia. In: Singh V (ed) Seabuckthorn (Hippophae L.): a multipurpose wonder plant. Daya Publishing House, New Delhi, pp 49–60

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge CSIR and DST-SERB for financial support through research grants HCP0007, HCP0008 and GAP2185.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghapal D. Sawant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kour, J., Balgotra, S., Rajput, P., Kour, H., Verma, P.K., Sawant, S.D. (2020). Medicinal Value of High-Altitude Plants of Indian Himalaya. In: Singh, B. (eds) Botanical Leads for Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-5917-4_14

Download citation

Publish with us

Policies and ethics