Skip to main content

Development of Ride Dynamics Mathematical Model for the Military Vehicle with Active Suspension System

  • Conference paper
  • First Online:
Advances in Rotor Dynamics, Control, and Structural Health Monitoring

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 592 Accesses

Abstract

The current paper aims to develop a ride dynamics math model of the entire military vehicle, with incorporation of the desired controller technique. The vehicle comprises 18 degree of freedom, viz., sprung mass bounce, pitch and roll about its CG, bounce for each of the 14 unsprung masses as well as for the driver’s seat. Coupled governing differential equations of motion for passive as well as active systems have been derived using state-space approach, and solved in Matlab. Various options are explored for optimising location of the controller such as PID and LQR, in order to obtain the desired vibration reduction at the driver’s location. Comparative dynamic analyses are carried out between the passive and active controlled system over standard terrain profiles, from which the optimum controller location is selected. This mathematical study would play a key role in fine-tuning the suspension properties as well as for deciding upon the optimum implementation of the controller with enhanced crew comfort at reduced cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee S, Balamurugan V, Krishnakumar R (2014) Ride dynamics mathematical model for a single station representation of tracked vehicle. J Terramech 53:47–58

    Google Scholar 

  2. Ekoru JE, Pedro JO (2013) Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems. J Zhejiang Univ Sci A 14(6):401–416

    Article  Google Scholar 

  3. Esmailzadeh E, Fahimi F (1997) Optimal adaptive active suspensions for a full car model. Veh Syst Dyn 27(2):89–107

    Article  Google Scholar 

  4. Gillespie TD (1992) Fundamentals of vehicle dynamics. Society of Automotive Engineers, USA

    Book  Google Scholar 

  5. Guclu Rahmi (2004) Active suspension control of eight degrees of freedom vehicle model. Math Comput Appl 9(1):1–10

    MATH  Google Scholar 

  6. Hu Jia-Wei, Lin Jung-Shan (2008) Nonlinear control of full-vehicle active suspensions with backstepping design scheme. IFAC Proc Vol 41(2):3404–3409

    Article  MathSciNet  Google Scholar 

  7. Jakati A, Banerjee S, Jebaraj C (2017) Development of mathematical models, simulating vibration control of tracked vehicle weapon dynamics. Def Sci J 67(4):465–475

    Google Scholar 

  8. Kaleemullah M, Faris WF, Hasbullah F (2011) Design of robust H∞, fuzzy and LQR controller for active suspension of a quarter car model. In: 2011 4th international conference on mechatronics (ICOM). IEEE, pp 1–6

    Google Scholar 

  9. Mathworks; Help Literature; Matlab R2013a

    Google Scholar 

  10. Mouleeswaran S (2012) Design and development of PID controller-based active suspension system for automobiles. PID controller design approaches-theory, tuning and application to frontier areas. InTech

    Google Scholar 

  11. Taghirad HD, Esmailzadeh E (1998) Automobile passenger comfort assured through LQG/LQR active suspension. J Vib Control 4(5):603–618

    Article  Google Scholar 

  12. Venkatasubramanian N, Banerjee S, Balamurugan V (2016) Non-linear seventeen degrees of freedom ride dynamics model of a full tracked vehicle in simMechanics. Procedia Eng 144:1086–1093

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to sincerely thank Dr. V Balamurugan, Sc. ‘G’, Additional Director, AP division (CVRDE) and Dr. P Sivakumar, Director (CVRDE), Chennai, for entrusting with the challenging though interesting work. We would like to thank each and every one at CEAD division, CVRDE for limitless support and encouraging us continuously. Finally, we would also like to thank all the Guides for their unending wishes, blessings and believing us at all times because of which we were able to complete the task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambarish Jakati .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 2.

Table 2 Parameters pertaining to 18 DOF of tracked vehicle
  1. 1.

    PID controller Gains:

  • \(K_{Pil} = K_{Pir} = - 30{,}000\),

  • \(K_{Dil} = K_{Dir} = 0\),

  • \(K_{Iil} = K_{Iir} = 0\),

  • where \(i = 1 \,\,{\text{to}}\,\, 7\)

  1. 2.

    LQR control parameters:

The ‘\(Q\)’ and ‘\(R\)’ are chosen by trial and error estimation:

$$x = 1e12 ; x_{1} = 1e15;$$

Q1 = diag([1e10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]);

R1 = diag([1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]);

\(\begin{aligned}Q2 = diag ( [ & 0\;0\;x\;0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0]); \end{aligned}\)

\(R2 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned}Q3 = diag( [& x\;0\;0\;0\;x\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0 ]); \end{aligned}\)

\(R3 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned}Q4 = diag( [ & 0\;0\;0\;0\;0\;0\;x_{1} \;x_{1} \;x_{1} \;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0 ]);\end{aligned}\)

\(R4 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned}Q5 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0 ]); \end{aligned}\)

\(R5 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q6 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0\;0]); \end{aligned}\)

\(R6 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q7 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0]); \end{aligned}\)

\(R7 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q8 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0]; \end{aligned}\)

\(R8 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned}Q9 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0]);\end{aligned}\)

\(R9 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q10 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;\\ &\quad0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0 ]); \end{aligned}\)

\(R10 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q11 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0]); \end{aligned}\)

\(R11 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q12 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;x\;0\;0\;\\ &\quad 0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0]);\end{aligned}\)

\(R12 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q13 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad 0\;x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0]); \end{aligned}\)

\(R13 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q14 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad x\;0\;0\;0\;0\;0\;0\;0\;0\;0]); \end{aligned}\)

\(R14 = diag\left( {\left[ {1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1} \right]} \right);\)

\(\begin{aligned} Q15 = diag( [ & x\;0\;0\;0\;0\;0\;0\;0\;0\,0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;\\ &\quad x\;0\;0\;0\;0\;0\;0\;0 ]); \end{aligned}\)

figure a

\(R15 = diag\left( {\left[ {1\,1\,1\,1\,1\,1\,1\,1\,1\,1\,1\,1\,1\,1\,1} \right]} \right);\)

where

$$\begin{aligned} A & = K_{1l} + K_{2l} + K_{3l} + K_{4l} + K_{5l} + K_{6l} + K_{7l} \\ & \quad + K_{1r} + K_{2r} + K_{3r} + K_{4r} + K_{5r} + K_{6r} + K_{7r} + K_{s} . \\ \end{aligned}$$
$$\begin{aligned} B & = - K_{1l} l_{1l} - K_{2l} l_{2l} - K_{3l} l_{3l} - K_{4l} l_{4l} + K_{5l} l_{5l} + K_{6l} l_{6l} + K_{7l} l_{7l} - K_{1r} l_{1r} \\ & \quad - K_{2r} l_{2r} - K_{3r} l_{3r} - K_{4r} l_{4r} + K_{5r} l_{5r} + K_{6r} l_{6r} + K_{7r} l_{7r} - K_{s} e_{p} . \\ \end{aligned}$$
$$\begin{aligned} C & = \left( { - K_{1l} - K_{2l} - K_{3l} - K_{4l} - K_{5l} - K_{6l} - K_{7l} } \right)a \\ & \quad + \left( {K_{1r} + K_{2r} + K_{3r} + K_{4r} + K_{5r} + K_{6r} + K_{7r} } \right)b + K_{s} e_{r} . \\ \end{aligned}$$
$$\begin{aligned} D & = - K_{1l} l_{1l} - K_{2l} l_{2l} - K_{3l} l_{3l} - K_{4l} l_{4l} + K_{5l} l_{5l} + K_{6l} l_{6l} + K_{7l} l_{7l} - K_{1r} l_{1r} - K_{2r} l_{2r} \\ & \quad - K_{3r} l_{3r} - K_{4r} l_{4r} + K_{5r} l_{5r} + K_{6r} l_{6r} + K_{7r} l_{7r} - K_{s} e_{p} . \\ \end{aligned}$$
$$\begin{aligned} E & = K_{1l} l_{1l}^{2} + K_{2l} l_{2l}^{2} + K_{3l} l_{3l}^{2} + K_{4l} l_{4l}^{2} + K_{5l} l_{5l}^{2} + K_{6l} l_{6l}^{2} + K_{7l} l_{7l}^{2} \\ & \quad + K_{1r} l_{1r}^{2} + K_{2r} l_{2r}^{2} + K_{3r} l_{3r}^{2} + K_{4r} l_{4r}^{2} + K_{5r} l_{5r}^{2} + K_{6r} l_{6r}^{2} + K_{7r} l_{7r}^{2} + K_{s} e_{p}^{2} . \\ \end{aligned}$$
$$\begin{aligned} F & = K_{1l} l_{1l} a + K_{2l} l_{2l} a + K_{3l} l_{3l} a + K_{4l} l_{4l} a - K_{5l} l_{5l} a - K_{6l} l_{6l} a \\ & \quad - K_{7l} l_{7l} a - K_{1r} l_{1r} b - K_{2r} l_{2r} b - K_{3r} l_{3r} b - K_{4r} l_{4r} b + K_{5r} l_{5r} b \\ & \quad + K_{6r} l_{6r} b + K_{7r} l_{7r} b - K_{s} e_{p} e_{r} . \\ \end{aligned}$$
$$\begin{aligned} G & = \left( { - K_{1l} - K_{2l} - K_{3l} - K_{4l} - K_{5l} - K_{6l} - K_{7l} } \right)a \\ & \quad + \left( {K_{1r} + K_{2r} + K_{3r} + K_{4r} + K_{5r} + K_{6r} + K_{7r} } \right)b + K_{s} e_{r} . \\ \end{aligned}$$
$$\begin{aligned} H & = K_{1l} al_{1l} + K_{2l} al_{2l} + K_{3l} al_{3l} + K_{4l} al_{4l} - K_{5l} al_{5l} - K_{6l} al_{6l} - K_{7l} al_{7l} \\ & \quad + \left( { - K_{1r} l_{1r} - K_{2r} l_{2r} - K_{3r} l_{3r} - K_{4r} l_{4r} + K_{5r} l_{5r} + K_{6r} l_{6r} + K_{7r} l_{7r} } \right)b - K_{s} e_{r} e_{p} . \\ \end{aligned}$$
$$\begin{aligned} I & = K_{1l} a^{2} + K_{2l} a^{2} + K_{3l} a^{2} + K_{4l} a^{2} + K_{5l} a^{2} + K_{6l} a^{2} + K_{7l} a^{2} + K_{1r} b^{2} + K_{2r} b^{2} \\ & \quad + K_{3r} b^{2} + K_{4r} b^{2} + K_{5r} b^{2} + K_{6r} b^{2} + K_{7r} b^{2} + K_{s} e_{r}^{2} . \\ \end{aligned}$$

Mass matrix is given by,

$$\begin{aligned} \left[ {M_{matrix} } \right] = diag( [& m_{s} \,M \,I_{p} \, I_{r} \, m_{1l} \, m_{2l} \, m_{3l} \,m_{4l} \,m_{5l} \,m_{6l} \,m_{7l} \, m_{1r} \, m_{2r} \, \\ & \quad m_{3r} \, m_{4r} \, m_{5r} \, m_{6r} \, m_{7r} ] ). \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakati, A., Jebaraj, C., Banerjee, S. (2020). Development of Ride Dynamics Mathematical Model for the Military Vehicle with Active Suspension System. In: Dutta, S., Inan, E., Dwivedy, S. (eds) Advances in Rotor Dynamics, Control, and Structural Health Monitoring . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5693-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5693-7_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5692-0

  • Online ISBN: 978-981-15-5693-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics