T. Vafeiadis, K.I. Diamantaras, G. Sarigiannidis, K.C. Chatzisavvas, A comparison of machine learning techniques for customer churn prediction. Simul. Model. Pract. Theory 55, 1–9 (2015)
CrossRef
Google Scholar
S.A. Qureshi, A.S. Rehman, A.M. Qamar, A. Kamal, A. Rehman, Telecommunication subscribers’ churn prediction model using machine learning, in 2013 Eighth International Conference on Digital Information Management (ICDIM) (IEEE, 2013), pp. 131–136
Google Scholar
K. Kim, C.-H. Jun, J. Lee, Improved churn prediction in telecommunication industry by analyzing a large network. Exp. Syst. Appl.
Google Scholar
C. Kirui, L. Hong, W. Cheruiyot, H. Kirui, Predicting customer churn in mobile telephony industry using probabilistic classifiers in data mining. Int. J. Comput. Sci. Issues (IJCSI) 10(2)
Google Scholar
G. Kraljevi´c, S. Gotovac, Modeling data mining applications for prediction of prepaid churn in telecommunication services. AUTOMATIKA: casopis za automatiku, mjerenje, elektroniku, raˇcunarstvo i komunikacije 51(3), 275–283 (2010)
Google Scholar
R.J. Jadhav, U.T. Pawar, Churn prediction in telecommunication using data mining technology. IJACSA Editorial
Google Scholar
D. Radosavljevik, P. van der Putten, K.K. Larsen, The impact of experimental setup in prepaid churn prediction for mobile telecommunications: What to predict, for whom and does the customer experience matter? Trans. MLDM 3(2), 80–99 (2010)
Google Scholar
Y. Richter, E. Yom-Tov, N. Slonim, Predicting customer churn in mobile networks through analysis of social groups, in SDM, vol. 2010 (SIAM, 2010), pp. 732–741
Google Scholar
S¸. G¨ursoy, U. Tu˘gba, Customer churn analysis in telecommunication sector. J. School Bus. Admin. Istanbul Univer. 39(1), 35–49 (2010)
Google Scholar
K. Tsiptsis, A. Chorianopoulos, Data Mining Techniques in CRM: Inside Customer Segmentation (Wiley, New York, 2011)
Google Scholar
F. Eichinger, D.D. Nauck, F. Klawonn, Sequence mining for customer behaviour predictions in telecommunications, in Proceedings of the Workshop on Practical Data Mining at ECML/PKDD (2006), pp. 3–10
Google Scholar
A. Lemmens, C. Croux, Bagging and boosting classification trees to predict churn. J. Mark. Res. 43(2), 276–286 (2006)
CrossRef
Google Scholar
Y. Xie, X. Li, Churn prediction with linear discriminant boosting algorithm, in 2008 International Conference on Machine Learning and Cybernetics, vol. 1 (IEEE, 2008), pp. 228–233
Google Scholar
U.D. Prasad, S. Madhavi, Prediction of churn behaviour of bank customers using data mining tools. Indian J. Mark. 42(9), 25–30 (2011)
Google Scholar
Dataset available on. https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling
Invesp Consulting. https://www.invespcro.com/blog/customer-acquisition-retention/
The Chartered Institute of Marketing, Cost of customer acquisition versus customer retention (2010)
Google Scholar
B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. de Freitas, Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)
CrossRef
Google Scholar
J.S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization. in Advances in Neural Information Processing Systems (2011), pp. 2546–2554
Google Scholar
F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in International Conference on Learning and Intelligent Optimization (Springer, Heidelberg), pp. 507–523
Google Scholar
K. Potdar, T.S. Pardawala, C.D. Pai, A comparative study of categorical variable encoding techniques for neural network classifiers. Int. J. Comput. Appl. 175(4), 7–9 (2017)
Google Scholar
Interquartile Range Upton, Graham; Cook, Ian Understanding Statistics (Oxford University Press, 1996)
Google Scholar
T. Wong, N, Yang, Dependency analysis of accuracy estimates in k-fold cross validation. IEEE Trans. Knowl. Data Eng. 29(11), 2417–2427 (2017)
Google Scholar
J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
CrossRef
Google Scholar
C. Cortes, V.N. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
MATH
Google Scholar
A. Ben-Hur, D. Horn, H. Siegelmann, V.N. Vapnik, Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)
Google Scholar
T.R. Patil, S.S. Sherekar, Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2). ISSN: 0974-1011
Google Scholar
T.K. Ho Random decision forests, in Proceedings of the 3rd International Conference on Document Analysis and Recognition (Montreal, QC, 1995), pp. 278–282
Google Scholar
N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression. Am. Statist. 46(3), 175–185 (1992)
MathSciNet
Google Scholar
L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (Wadsworth and Brooks/Cole Advanced Books and Software, Monterey, CA, 1984)
MATH
Google Scholar
T. Elhassan, M. Aljurf, Classification of imbalance data using Tomek Link (T-Link) combined with Random Under-Sampling (RUS) as a data reduction method
Google Scholar
S. Visa, A. Ralescu, Issues in mining imbalanced data sets-a review paper, in Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, vol. 2005 (2005), pp. 67–73). sn
Google Scholar
M.R. Spiegel, L.J. Stephens, Schaum’s outlines statistics, 4th edn. (McGraw Hill, 2008)
Google Scholar
I. Jolliffe, Principal component analysis, in International Encyclopedia of Statistical Science, ed. by M. Lovric (Springer, Heidelberg, 2011)
Google Scholar
R. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions (1999)
Google Scholar
https://github.com/dmlc/xgboost
J.H. Friedman, Greedy function approximation: a gradient boosting machine (1999)
Google Scholar
Scikit learn documentation credits/link. https://scikit-learn.org/stable/documentation.html
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Perrot, É. Duchesnay, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Google Scholar