Skip to main content

Dopamine Beta Hydroxylase: An Enzyme with Therapeutic Potential to Combat Neural and Cardiovascular Diseases

  • Chapter
  • First Online:
Frontiers in Protein Structure, Function, and Dynamics

Abstract

The brain and the heart are arguably the two most important organs of the human body. It is thus no surprise that diseases of the brain and heart are of the highest concern and are the major causes of mortality and morbidity worldwide. A physiological process that is common to both of these major organs is the catecholamine biosynthetic pathway, where the products of the pathway regulate several major events in the human body. The changes in the levels of catecholamines are originators of several neural and cardiovascular diseases. Dopamine beta hydroxylase (DBH), an enzyme that plays a central and critical role in the catecholamine biosynthetic pathway, regulates the concentrations of dopamine and norepinephrine, whose deficiency or overproduction causes several diseases related to the brain and the heart. This enzyme is thus of great therapeutic significance. Insight into the genetics, structure, function, and dynamics of the protein will provide scope for discovery and design of potential small molecule drugs to treat neurological or cardiovascular disorders utilizing structure-based, rational drug discovery approaches.

Swati Kundu and Manisha Saini contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Wu Z, Yamamoto M, Jin JJ, Tabara Y, Mogi M, Kohara K, Miki T, Nakura J (2005) Association of dopamine β-hydroxylase polymorphism with hypertension through interaction with fasting plasma glucose in Japanese. Hypertens Res 28(3):215–221

    CAS  PubMed  Google Scholar 

  • Almeida L, Nunes T, Costa R, Rocha JF, Vaz-da-Silva M, Soares-da-Silva P (2013) Etamicastat, a novel dopamine β-hydroxylase inhibitor: tolerability, pharmacokinetics, and pharmacodynamics in patients with hypertension. Clin Ther 35(12):1983–1996

    CAS  PubMed  Google Scholar 

  • Arnold AC, Garland EM, Celedonio JE, Raj SR, Abumrad NN, Biaggioni I, Robertson D, Luther JM, Shibao CA (2017) Hyperinsulinemia and insulin resistance in dopamine β-hydroxylase deficiency. J Clin Endocrinol Metab 102(1):10–14

    PubMed  Google Scholar 

  • Barrie ES, Weinshenker D, Verma A, Pendergrass SA, Lange LA, Ritchie MD, Wilson JG, Kuivaniemi H, Tromp G, Carey DJ (2014) Regulatory polymorphisms in human DBH affect peripheral gene expression and sympathetic activity. Circ Res 115(12):1017–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beliaev A, Ferreira H, Learmonth DA, Soares-da-Silva P (2009) Dopamine β-monooxygenase: mechanism, substrates and inhibitors. Curr Enzym Inhib 5(1):27–43

    Google Scholar 

  • Biaggioni I, Goldstein DS, Atkinson T, Robertson D (1990) Dopamine-β-hydroxylase deficiency in humans. Neurology 40(2):370–370

    CAS  PubMed  Google Scholar 

  • Bicker J, Alves G, Fortuna A, Soares-da-Silva P, Falcão A (2016) A new PAMPA model using an in-house brain lipid extract for screening the blood–brain barrier permeability of drug candidates. Int J Pharm 501(1-2):102–111

    CAS  PubMed  Google Scholar 

  • Bonifácio MJ, Sousa F, Neves M, Palma N, Igreja B, Pires NM, Wright LC, Soares-da-Silva P (2015) Characterization of the interaction of the novel antihypertensive etamicastat with human dopamine-β-hydroxylase: comparison with nepicastat. Eur J Pharmacol 751:50–58

    PubMed  Google Scholar 

  • Byrne CJ, Khurana S, Kumar A, Tai T (2018) Inflammatory signaling in hypertension: regulation of adrenal catecholamine biosynthesis. Front Endocrinol 9:343

    Google Scholar 

  • Catelas DN, Serrão MP, Soares-Da-Silva P (2020) Effects of nepicastat upon dopamine-β-hydroxylase activity and dopamine and norepinephrine levels in the rat left ventricle, kidney, and adrenal gland. Clin Exp Hypertens 42(2):118–125

    CAS  PubMed  Google Scholar 

  • Chen Y, Wen G, Rao F, Zhang K, Wang L, Rodriguez-Flores JL, Sanchez AP, Mahata M, Taupenot L, Sun P (2010) Human dopamine beta-hydroxylase (DBH) regulatory polymorphism that influences enzymatic activity, autonomic function, and blood pressure. J Hypertens 28(1):76–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claxton IM, Palfreyman MG, Poyser RH, Whiting RL (1976) BRL 8242 (2-[2-benzimidazolyl]-amino-2-imidazoline dihydrochloride), a new inhibitor of dopamine-β-hydroxylase with antihypertensive activity. Eur J Pharmacol 37(1):179–188

    CAS  PubMed  Google Scholar 

  • Corrodi H, Fuxe K, Hamberger B, Ljungdahl Å (1970) Studies on central and peripheral noradrenaline neurons using a new dopamine-β-hydroxylase inhibitor. Eur J Pharmacol 12(2):145–155

    CAS  PubMed  Google Scholar 

  • Cubells J, Kranzler H, McCance-Katz E, Anderson G, Malison R, Price L, Gelernter J (2000) A haplotype at the DBH locus, associated with low plasma dopamine β-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5(1):56–63

    CAS  PubMed  Google Scholar 

  • De La Garza IIR, Bubar MJ, Carbone CL, Moeller FG, Newton TF, Anastasio NC, Harper TA, Ware DL, Fuller MA, Holstein GJ (2015) Evaluation of the dopamine β-hydroxylase (DβH) inhibitor nepicastat in participants who meet criteria for cocaine use disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 59:40–48

    Google Scholar 

  • De Potter W, De Schaepdryver A, Smith A (1970) Release of chromogranin A and dopamine-beta-hydroxylase from adrenergic nerves during nerve stimulation. Acta Physiol Scand 357:8

    Google Scholar 

  • De RC, Ranieri G, Bonfantino V, Adriani A, Filitti V, Ferrieri A (1993) Slow-release nicardipine in the treatment of arterial hypertension: comparative study vs. an ACE inhibitor. Minerva Cardioangiol 41(10):457–463

    Google Scholar 

  • Deinum J, Steenbergen-Spanjers G, Jansen M, Boomsma F, Lenders J, Van Ittersum F, Hück N, van den Heuvel L, Wevers R (2004) DBH gene variants that cause low plasma dopamine β hydroxylase with or without a severe orthostatic syndrome. J Med Genet 41(4):e38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del-Bel E, De-Miguel FF (2018) Extrasynaptic neurotransmission mediated by exocytosis and diffusive release of transmitter substances. Front Synaptic Neurosci 10:13

    PubMed  PubMed Central  Google Scholar 

  • Dey SK, Saini M, Prabhakar P, Kundu S (2020) Dopamine β hydroxylase as a potential drug target to combat hypertension. Expert Opin Inv Drug (In Press)

    Google Scholar 

  • Frigon RP, Stone RA (1978) Human plasma dopamine beta-hydroxylase. Purification and properties. J Biol Chem 253(19):6780–6786

    CAS  PubMed  Google Scholar 

  • Furuta Y, Washizaki M (1976) Effects of fusaric acid and its derivative on the cardiovascular system. Nihon Yakurigaku Zasshi 72(2):139–144

    CAS  PubMed  Google Scholar 

  • Garland EM (2012) Dopamine β-hydroxylase deficiency. In: Primer on the autonomic nervous system. Elsevier, Amsterdam, pp 431–434

    Google Scholar 

  • Goldin L, Gershon E, Lake C, Murphy D, McGinniss M, Sparkes R (1982) Segregation and linkage studies of plasma dopamine-beta-hydroxylase (DBH), erythrocyte catechol-O-methyltransferase (COMT), and platelet monoamine oxidase (MAO): possible linkage between the ABO locus and a gene controlling DBH activity. Am J Hum Genet 34(2):250–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hachisu M, Tsuruoka T, Takahashi H, Asaoka H, Sekizawa Y, Koeda T, Inouye S (1983) Synthesis and antihypertensive activity of 5-O-substituted derivatives of 5-hydroxypicolinic acid. J Pharmacobiodyn 6(12):922–931

    CAS  PubMed  Google Scholar 

  • Hamblin KA, Flick-Smith H, Barnes KB, Pereira-Leal JB, Surkont J, Hampson R, Atkins HS, Harding SV (2019) Disulfiram, an alcohol dependence therapy, can inhibit the in vitro growth of Francisella tularensis. Int J Antimicrob Agents 54(1):85–88

    CAS  PubMed  Google Scholar 

  • Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape H-C, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 73(5):454–463

    CAS  PubMed  Google Scholar 

  • Hastings JA, Morris MJ, Lambert G, Lambert E, Esler M (2004) NPY and NPY Y1 receptor effects on noradrenaline overflow from the rat brain in vitro. Regul Pept 120(1-3):107–112

    CAS  PubMed  Google Scholar 

  • Houhou L, Lamouroux A, Biguet NF, Mallet J (1995) Expression of human dopamine β-hydroxylase in mammalian cells infected by recombinant vaccinia virus. Mechanisms for membrane attachment. J Biol Chem 270(21):12601–12606

    CAS  PubMed  Google Scholar 

  • Igreja B, Wright LC, Soares-da-Silva P (2016) Sustained high blood pressure reduction with etamicastat, a peripheral selective dopamine β-hydroxylase inhibitor. J Am Soc Hypertens 10(3):207–216

    CAS  PubMed  Google Scholar 

  • Igreja B, Pires N, Loureiro A, Wright L, Soares-da-Silva P (2019a) Cardiometabolic and inflammatory benefits of sympathetic down-regulation with zamicastat in aged spontaneously hypertensive rats. ACS Pharmacol Trans Sci 2(5):353–360

    CAS  Google Scholar 

  • Igreja B, Pires NM, Wright LC, Soares-da-Silva P (2019b) Effects of zamicastat treatment in a genetic model of salt-sensitive hypertension and heart failure. Eur J Pharmacol 842:125–132

    CAS  PubMed  Google Scholar 

  • Ishii Y, Fujii Y, Mimura C, Umezawa H (1975) Pharmacological action of FD-008, a new dopamine beta-hydroxylase inhibitor. I. Effects on blood pressure in rats and dogs. Arzneimittelforschung 25(1):55–59

    CAS  PubMed  Google Scholar 

  • Jepma M, Deinum J, Asplund CL, Rombouts SA, Tamsma JT, Tjeerdema N, Spapé MM, Garland EM, Robertson D, Lenders JW (2011) Neurocognitive function in dopamine-β-hydroxylase deficiency. Neuropsychopharmacology 36(8):1608–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson G, Boukma S, Kim E (1970) In vivo inhibition of dopamine β-hydroxylase by 1-phenyl-3-(2-thiazolyl)-2-thiourea (U-14,624). J Pharmacol Exp Ther 171(1):80–87

    CAS  PubMed  Google Scholar 

  • Johnson DG, Thoa NB, Weinshilboum R, Axelrod J, Kopin IJ (1971) Enhanced release of dopamine-β-hydroxylase from sympathetic nerves by calcium and phenoxybenzamine and its reversal by prostaglandins. Proc Natl Acad Sci U S A 68(9):2227–2230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor A, Shandilya M, Kundu S (2011) Structural insight of dopamine β-hydroxylase, a drug target for complex traits, and functional significance of exonic single nucleotide polymorphisms. PLoS One 6(10):e26509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kemper C, O’connor D, Westlund K (1987) Immunocytochemical localization of dopamine-β-hydroxylase in neurons of the human brain stem. Neuroscience 23(3):981–989

    CAS  PubMed  Google Scholar 

  • Kim C-H, Leung A, Huh YH, Yang E, Kim D-J, Leblanc P, Ryu H, Kim K, Kim D-W, Garland EM (2011) Norepinephrine deficiency is caused by combined abnormal mRNA processing and defective protein trafficking of dopamine β-hydroxylase. J Biol Chem 286(11):9196–9204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriakov A, Khlebarova M, Staneva-Stoicheva D, Panova I (1973) The effect of prolonged treatment hypertensive rats with antihypertensive agents with different mechanisms of action on blood pressure and noradrenaline concentration in the myocardium, brain and aorta. Eksp Med Morfol 12(3):135–141

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T (1989) Human dopamine β-hydroxylase gene: two mRNA types having different 3’terminal regions are produced through alternative polyadenylation. Nucleic Acids Res 17(3):1089–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosten TR, Wu G, Huang W, Harding MJ, Hamon SC, Lappalainen J, Nielsen DA (2013) Pharmacogenetic randomized trial for cocaine abuse: disulfiram and dopamine β-hydroxylase. Biol Psychiatry 73(3):219–224

    CAS  PubMed  Google Scholar 

  • Kruse LI, Kaiser C, DeWolf WE Jr, Frazee JS, Erickson RW, Ezekiel M, Ohlstein EH, Ruffolo RR Jr, Berkowitz BA (1986) Substituted 1-benzylimidazole-2-thiols as potent and orally active inhibitors of dopamine. Beta-hydroxylase. J Med Chem 29(6):887–889

    CAS  PubMed  Google Scholar 

  • Kruse LI, Kaiser C, DeWolf WE Jr, Frazee JS, Ross ST, Wawro J, Wise M, Flaim KE, Sawyer JL (1987) Multisubstrate inhibitors of dopamine. Beta-hydroxylase. 2. Structure-activity relationships at the phenethylamine binding site. J Med Chem 30(3):486–494

    CAS  PubMed  Google Scholar 

  • Kundu S, Thelma B, Maulik S, Prabhakar P, Dey SK (2017) Novel anti-hypertensive and anti-cardiac hypertrophic compounds. Indian Patent Application. 201711036983A

    Google Scholar 

  • Kundu S, Dey SK, Thelma B, Kovuru G, Prabhakar P, Saini M (2018) An anti-hypertensive cardio-protective composition. Indian Patent Application. 201811005899A

    Google Scholar 

  • Laduron PM (1975) Evidence for a localization of dopamine-β-hydroxylase within the chromaffin granules. FEBS Lett 52(1):132–134

    CAS  PubMed  Google Scholar 

  • Lerner P, Goodwin F, Post R, Major L, Ballenger J, Lovenberg W (1978) Dopamine-beta-hydroxylase in the cerebrospinal fluid of psychiatric patients. Biol Psychiatry 13(6):685–694

    CAS  PubMed  Google Scholar 

  • Levin M (1961) The levels of the nervous system and their capacity to function idependently of each other. J Nerv Ment Dis 132(1):75–79

    CAS  PubMed  Google Scholar 

  • Lewis EJ, Asnani L (1992) Soluble and membrane-bound forms of dopamine beta-hydroxylase are encoded by the same mRNA. J Biol Chem 267(1):494–500

    CAS  PubMed  Google Scholar 

  • Lippmann W, Lloyd K (1969) Dopamine-ß-hydroxylase inhibition by dimethyldithiocarbamate and related compounds. Biochem Pharmacol 18(10):2507–2516

    CAS  PubMed  Google Scholar 

  • Ljones T, Flatmark T (1974) Dophamine β-Hhydroxylase: evidence against a ping-pong mechanism. FEBS Lett 49(1):49–52

    CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Loureiro A, Soares-da-Silva P (2015) Distribution and pharmacokinetics of etamicastat and its N-acetylated metabolite (BIA 5-961) in dog and monkey. Xenobiotica 45(10):903–911

    CAS  PubMed  Google Scholar 

  • Loureiro AI, Bonifácio MJ, Fernandes-Lopes C, Pires N, Igreja B, Wright LC, Soares-da-Silva P (2015) Role of P-glycoprotein and permeability upon the brain distribution and pharmacodynamics of etamicastat: a comparison with nepicastat. Xenobiotica 45(9):828–839

    CAS  PubMed  Google Scholar 

  • Marino MD, Bourdélat-Parks BN, Liles LC, Weinshenker D (2005) Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161(2):197–203

    CAS  PubMed  Google Scholar 

  • Mathias C, Bannister R, Cortelli P, Heslop K, Polak J, Raimbach S, Springall D, Watson L (1990) Clinical, autonomic and therapeutic observations in two siblings with postural hypotension and sympathetic failure due to an inability to synthesize noradrenaline from dopamine because of a deficiency of dopamine beta hydroxylase. Q J Med 75(3):617–633

    CAS  PubMed  Google Scholar 

  • Matsuzaki M, Nakamura K, Akutsu S, Onodera K, Sekino M (1976) Fundamental studies on fusaric acid and calcium fusarate. Acute toxicity and antihypertensive effects. Jpn J Antibiot 29(5):439–455

    CAS  PubMed  Google Scholar 

  • Matuzas W, Meltzer H, Uhlenhuth E, Glass R, Tong C (1982) Plasma dopamine-beta-hydroxylase in depressed patients. Biol Psychiatry 17(12):1415–1424

    CAS  PubMed  Google Scholar 

  • McCorry LK (2007) Physiology of the autonomic nervous system. Am J Pharm Educ 71(4):78

    PubMed  PubMed Central  Google Scholar 

  • Molinoff PB, Landsberg L, Axelrod J (1969) An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines. J Pharmacol Exp Ther 170(2):253–261

    CAS  PubMed  Google Scholar 

  • Nagatsu T (2009) Simple photometric assay of dopamine-β-hydroxylase activity in human blood: useful in clinical chemistry. Clin Chem 55(1):193–194

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Kuzuya H, Hidaka H (1967) Inhibition of dopamine β-hydroxylase by sulfhydryl compounds and the nature of the natural inhibitors. Biochim Biophys Acta 139(2):319–327

    CAS  PubMed  Google Scholar 

  • Nunes T, Rocha JF, Vaz-da-Silva M, Igreja B, Wright LC, Falcão A, Almeida L, Soares-da-Silva P (2010) Safety, tolerability, and pharmacokinetics of etamicastat, a novel dopamine-β-hydroxylase inhibitor, in a rising multiple-dose study in young healthy subjects. Drugs R D 10(4):225–242

    PubMed  PubMed Central  Google Scholar 

  • Ohlstein E, Kruse L, Ezekiel M, Sherman S, Erickson R, DeWolf W, Berkowitz B (1987) Cardiovascular effects of a new potent dopamine beta-hydroxylase inhibitor in spontaneously hypertensive rats. J Pharmacol Exp Ther 241(2):554–559

    CAS  PubMed  Google Scholar 

  • Parasuraman R, Greenwood PM, Kumar R, Fossella J (2005) Beyond heritability: neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychol Sci 16(3):200–207

    PubMed  PubMed Central  Google Scholar 

  • Parasuraman R, de Visser E, Lin M-K, Greenwood PM (2012) Dopamine beta hydroxylase genotype identifies individuals less susceptible to bias in computer-assisted decision making. PLoS One 7(6):e39675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pires NM, Igreja B, Moura E, Wright LC, Serrão MP, Soares-da-Silva P (2015) Blood pressure decrease in spontaneously hypertensive rats folowing renal denervation or dopamine β-hydroxylase inhibition with etamicastat. Hypertens Res 38(9):605–612

    CAS  PubMed  Google Scholar 

  • Punchaichira TJ, Dey SK, Mukhopadhyay A, Kundu S, Thelma B (2017) Characterization of SNPs in the dopamine-β-hydroxylase gene providing new insights into its structure-function relationship. Neurogenetics 18(3):155–168

    CAS  PubMed  Google Scholar 

  • Punchaichira TJ, Deshpande SN, Thelma B (2018) Determination of dopamine-β-hydroxylase activity in human serum using UHPLC-PDA detection. Neurochem Res 43(12):2324–2332

    CAS  PubMed  Google Scholar 

  • Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA (2001) Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol 38(3):876–882

    CAS  PubMed  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson D, Goldberg MR, Onrot J, Hollister AS, Wiley R, Thompson JG Jr, Robertson RM (1986) Isolated failure of autonomic noradrenergic neurotransmission. N Engl J Med 314(23):1494–1497

    CAS  PubMed  Google Scholar 

  • Rocha JF, Vaz-Da-Silva M, Nunes T, Igreja B, Loureiro AI, Bonifácio MJ, Wright LC, Falcão A, Almeida L, Soares-Da-Silva P (2012) Single-dose tolerability, pharmacokinetics, and pharmacodynamics of etamicastat (BIA 5–453), a new dopamine β-hydroxylase inhibitor, in healthy subjects. J Clin Pharmacol 52(2):156–170

    CAS  PubMed  Google Scholar 

  • Rosenberg RC, Lovenberg W (1977) Active dimers of dopamine β-hydroxylase in human plasma. Mol Pharmacol 13(4):652–661

    CAS  PubMed  Google Scholar 

  • Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22(2-3):307–319

    CAS  PubMed  Google Scholar 

  • Rush R, Geffen L (1980) Dopamine β-hydroxylase in health and disease. Crit Rev Clin Lab Sci 12(3):241–277

    CAS  PubMed  Google Scholar 

  • Sabbah HN, Stanley WC, Sharov VG, Mishima T, Tanimura M, Benedict CR, Hegde S, Goldstein S (2000) Effects of dopamine β-hydroxylase inhibition with nepicastat on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Circulation 102(16):1990–1995

    CAS  PubMed  Google Scholar 

  • Saxena A, Fleming PJ (1983) Isolation and reconstitution of the membrane-bound form of dopamine beta-hydroxylase. J Biol Chem 258(7):4147–4152

    CAS  PubMed  Google Scholar 

  • Schroeder JP, Cooper DA, Schank JR, Lyle MA, Gaval-Cruz M, Ogbonmwan YE, Pozdeyev N, Freeman KG, Iuvone PM, Edwards GL (2010) Disulfiram attenuates drug-primed reinstatement of cocaine seeking via inhibition of dopamine β-hydroxylase. Neuropsychopharmacology 35(12):2440–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JP, Epps SA, Grice TW, Weinshenker D (2013) The selective dopamine β-hydroxylase inhibitor nepicastat attenuates multiple aspects of cocaine-seeking behavior. Neuropsychopharmacology 38(6):1032–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo H, Yang C, Kim H-S, Kim K-S (1996) Multiple protein factors interact with the cis-regulatory elements of the proximal promoter in a cell-specific manner and regulate transcription of the dopamine b-hydroxylase gene. J Neurosci 16(13):4102–4112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Cheng K-T, Leung Y-K, Kwok Y-C, Kwan H-Y, Wong C-O, Chen Z-Y, Huang Y, Yao X (2008) Epinephrine-induced Ca2+ influx in vascular endothelial cells is mediated by CNGA2 channels. J Mol Cell Cardiol 45(3):437–445

    CAS  PubMed  Google Scholar 

  • Slater EP, Zaremba S, Hogue-Angeletti RA (1981) Purification of membrane-bound dopamine β-monooxygenase from chromaffin granules: relation to soluble dopamine β-monooxygenase. Arch Biochem Biophys 211(1):288–296

    CAS  PubMed  Google Scholar 

  • Sokoloff RL, Frigon RP, O’Connor DT (1985) Dopamine-β-hydroxylase: structural comparisons of membrane-bound versus soluble forms from adrenal medulla and pheochromocytoma. J Neurochem 44(2):411–420

    CAS  PubMed  Google Scholar 

  • Stewart MH, Lavie CJ, Ventura HO (2018) Future pharmacological therapy in hypertension. Curr Opin Cardiol 33(4):408–415

    PubMed  Google Scholar 

  • Stubbusch J, Majdazari A, Schmidt M, Schütz G, Deller T, Rohrer H (2011) Generation of the tamoxifen-inducible DBH-Cre transgenic mouse line DBH-CT. Genesis 49(12):935–941

    CAS  PubMed  Google Scholar 

  • Tang S, Yao B, Li N, Lin S, Huang Z (2018) Association of dopamine beta-hydroxylase polymorphisms with alzheimer’s disease, Parkinson’s disease and schizophrenia: evidence based on currently available loci. Cell Physiol Biochem 51(1):411–428

    CAS  PubMed  Google Scholar 

  • Taylor CS, Fleming PJ (1989) Conversion of soluble dopamine beta-hydroxylase to a membrane binding form. J Biol Chem 264(26):15242–15246

    CAS  PubMed  Google Scholar 

  • Teitelman G, Baker H, Joh TH, Reis DJ (1979) Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: possible role of tissue environment. Proc Natl Acad Sci U S A 76(1):509–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tishchenko K, Beloglazkina E, Mazhuga A, Zyk N (2016) Copper-containing enzymes: site types and low-molecular-weight model compounds. Rev J Chem 6(1):49–82

    CAS  Google Scholar 

  • Veld AM, Moleman P, Boomsma F, Schalekamp M (1987) Congenital dopamine-beta-hydroxylase deficiency: a novel orthostatic syndrome. Lancet 329(8526):183–188

    Google Scholar 

  • Vendelboe TV, Harris P, Zhao Y, Walter TS, Harlos K, El Omari K, Christensen HE (2016) The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Sci Adv 2(4):e1500980

    PubMed  PubMed Central  Google Scholar 

  • Wallace EF, Krantz MJ, Lovenberg W (1973) Dopamine-β-hydroxylase: a tetrameric glycoprotein. Proc Natl Acad Sci U S A 70(8):2253–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ng T (1999) Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sci 65(9):849–856

    CAS  PubMed  Google Scholar 

  • Weinshilboum RM (1989) Catecholamine biochemical genetics. In: Trendelenburg U, Weiner N (eds) Catecholamines II, pp 391–425. Handbook of experimental pharmacology, vol 90/2. Springer, Berlin, Heidelberg

    Google Scholar 

  • Weinshilboum RM, Thoa NB, Johnson DG, Kopin IJ, Axelrod J (1971) Proportional release of norepinephrine and dopamine-β-hydroxylase from sympathetic nerves. Science 174(4016):1349–1351

    CAS  PubMed  Google Scholar 

  • Whaley-Connell A, Sowers K, Sowers JR (2006) Hypertension and cardiovascular disease. In: The diabetic kidney. Springer, Berlin, pp 499–513

    Google Scholar 

  • William Tank A, Lee Wong D (2011) Peripheral and central effects of circulating catecholamines. Compr Physiol 5(1):1–15

    Google Scholar 

  • Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, Kim K-S, Kim C-H, Malison RT, Gelernter J (2001) A quantitative-trait analysis of human plasma–dopamine β-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 68(2):515–522

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, S., Saini, M., Dey, S.K., Kundu, S. (2020). Dopamine Beta Hydroxylase: An Enzyme with Therapeutic Potential to Combat Neural and Cardiovascular Diseases. In: Singh, D., Tripathi, T. (eds) Frontiers in Protein Structure, Function, and Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5530-5_14

Download citation

Publish with us

Policies and ethics