Skip to main content

Protein Folding, Dynamics and Aggregation at Single-Molecule Resolution

Abstract

The last couple of decades have witnessed a significant surge in the use of single-molecule fluorescence methods aimed at the in-depth understanding of how proteins fold to perform their biochemical functions. The detection of individual fluorophores enables the observation of a single protein molecule’s conformational dynamic, in vivo localization within the heterogeneous cellular milieu, its fluorescence quenching upon intermolecular interactions, polarization response and fluorescence resonance energy transfer. This chapter has assembled a fundamental understanding of the single-molecule fluorescence techniques: Fluorescence Correlation Spectroscopy and Förster’s Resonance Energy Transfer, and their use in case studies to illustrate how these techniques have enhanced our understanding of the mechanisms underlying protein folding and aggregation. Due to their high sensitivity and specificity, these techniques are becoming indispensable for the study of protein structure and conformational fluctuations.

Keywords

  • Single-molecule fluorescence
  • Fluorescence correlation spectroscopy
  • Energy landscape
  • Förster’s resonance energy transfer
  • Alpha-Synuclein
  • Cytochrome c
  • Intestinal fatty acid-binding protein

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-5530-5_10
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   159.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-5530-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   209.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5

References

  • Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790

    CAS  PubMed  CrossRef  Google Scholar 

  • Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN (2007a) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127(1–2):1–8

    CAS  PubMed  CrossRef  Google Scholar 

  • Arakawa T, Tsumoto K, Nagase K, Ejima D (2007b) The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expr Purif 54(1):110–116

    CAS  PubMed  CrossRef  Google Scholar 

  • Basak S, Chattopadhyay K (2013) Fluorescence correlation spectroscopy study on the effects of the shape and size of a protein on its diffusion inside a crowded environment. Langmuir 29(47):14709–14717

    CAS  PubMed  CrossRef  Google Scholar 

  • Basak S, Chattopadhyay K (2014) Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys Chem Chem Phys 16(23):11139–11149

    CAS  PubMed  CrossRef  Google Scholar 

  • Basak S, Prasad GV, Varkey J, Chattopadhyay K (2015) Early sodium dodecyl sulfate induced collapse of alpha-synuclein correlates with its amyloid formation. ACS Chem Neurosci 6(2):239–246

    CAS  PubMed  CrossRef  Google Scholar 

  • Baskakov I, Disterer P, Breydo L, Shaw M, Gill A, James W, Tahiri-Alaoui A (2005) The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Lett 579(12):2589–2596

    CAS  PubMed  CrossRef  Google Scholar 

  • Böhmer M, Enderlein J (2003) Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. ChemPhysChem 4(8):792–808

    CrossRef  CAS  Google Scholar 

  • Bolen DW, Rose GD (2008) Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77:339–362

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowler BE (2012) Residual structure in unfolded proteins. Curr Opin Struct Biol 22(1):4–13

    CAS  PubMed  CrossRef  Google Scholar 

  • Brewster D (1848) On the decomposition and dispersion of light within solid and fluid bodies. Lond Edinb Dublin Philos Mag J Sci 32(217):401–412

    CrossRef  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21(3):167–195

    CAS  PubMed  CrossRef  Google Scholar 

  • Chakraborty R, Dey S, Paul SS, Sil P, Sengupta J, Chattopadhyay K (2019) Heme minimizes Parkinson’s disease-associated toxicity by inducing a conformational distortion in the oligomers of alpha-Synuclein. bioRxiv 629238

    Google Scholar 

  • Chattopadhyay K, Saffarian S, Elson EL, Frieden C (2002) Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 99(22):14171–14176

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chattopadhyay K, Elson EL, Frieden C (2005) The kinetics of conformational fluctuations in an unfolded protein measured by fluorescence methods. Proc Natl Acad Sci U S A 102(7):2385–2389

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Coelho M, Maghelli N, Tolić-Nørrelykke IM (2013) Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr Biol 5(5):748–758

    CAS  CrossRef  Google Scholar 

  • Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TPJ, Dobson CM, Klenerman D (2012) Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149(5):1048–1059

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dobson CM (2004) Experimental investigation of protein folding and misfolding. Methods 34(1):4–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Drescher M, Huber M, Subramaniam V (2012) Hunting the chameleon: structural conformations of the intrinsically disordered protein alpha-synuclein. Chembiochem 13(6):761–768

    CAS  PubMed  CrossRef  Google Scholar 

  • Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43(1):8–18

    CAS  PubMed  CrossRef  Google Scholar 

  • Elbaum-Garfinkle S, Rhoades E (2012) Identification of an aggregation-prone structure of tau. J Am Chem Soc 134(40):16607–16613

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ellis CR, Maiti B, Noid WG (2012) Specific and nonspecific effects of glycosylation. J Am Chem Soc 134(19):8184–8193

    CAS  PubMed  CrossRef  Google Scholar 

  • Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101(12):2855–2870

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ferreon AC, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci U S A 106(14):5645–5650

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ferreon AC, Moran CR, Gambin Y, Deniz AA (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    CAS  PubMed  CrossRef  Google Scholar 

  • Frieden C, Chattopadhyay K, Elson EL (2002) What fluorescence correlation spectroscopy can tell us about unfolded proteins. Adv Protein Chem 62:91–109

    CAS  PubMed  CrossRef  Google Scholar 

  • Gambin Y, Deniz AA (2010) Multicolor single-molecule FRET to explore protein folding and binding. Mol BioSyst 6(9):1540–1547

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghosh R, Sharma S, Chattopadhyay K (2009) Effect of arginine on protein aggregation studied by fluorescence correlation spectroscopy and other biophysical methods. Biochemistry 48(5):1135–1143

    CAS  PubMed  CrossRef  Google Scholar 

  • Ghosh S, Kundu A, Chattopadhyay K (2018) Small molecules attenuate the interplay between conformational fluctuations, early oligomerization and amyloidosis of alpha synuclein. Sci Rep 8(1):5481

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33(7):317–325

    CAS  PubMed  CrossRef  Google Scholar 

  • Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci U S A 108(39):16398–16403

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Haldar S, Mitra S, Chattopadhyay K (2010) Role of protein stabilizers on the conformation of the unfolded state of cytochrome c and its early folding kinetics: investigation at single molecular resolution. J Biol Chem 285(33):25314–25323

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Herschel JFW (1851) On a case of superficial colour presented by a homogeneous liquid internally colourless. Proc R Soc Lond 5:547–547

    CrossRef  Google Scholar 

  • Hillger F, Hanni D, Nettels D, Geister S, Grandin M, Textor M, Schuler B (2008) Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy. Angew Chem Int Ed Engl 47(33):6184–6188

    CAS  PubMed  CrossRef  Google Scholar 

  • Hodsdon ME, Frieden C (2001) Intestinal fatty acid binding protein: the folding mechanism as determined by NMR studies. Biochemistry 40(3):732–742

    CAS  PubMed  CrossRef  Google Scholar 

  • Jaenicke R (1995) Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond Ser B Biol Sci 348(1323):97–105

    CAS  CrossRef  Google Scholar 

  • Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45(7):2283–2293

    CAS  PubMed  CrossRef  Google Scholar 

  • Kagan BL (2012) Membrane pores in the pathogenesis of neurodegenerative disease. Prog Mol Biol Transl Sci 107:295–325

    CAS  PubMed  CrossRef  Google Scholar 

  • Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17(1):48–57

    CAS  PubMed  CrossRef  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    CrossRef  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    CAS  PubMed  CrossRef  Google Scholar 

  • Lemke EA, Gambin Y, Vandelinder V, Brustad EM, Liu HW, Schultz PG, Groisman A, Deniz AA (2009) Microfluidic device for single-molecule experiments with enhanced photostability. J Am Chem Soc 131(38):13610–13612

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Melo AM, Elbaum-Garfinkle S, Rhoades E (2017) Insights into tau function and dysfunction through single-molecule fluorescence. Methods Cell Biol 141:27–44

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Morar AS, Olteanu A, Young GB, Pielak GJ (2001) Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Sci 10(11):2195–2199

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34(1):151–160

    CAS  PubMed  CrossRef  Google Scholar 

  • Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78

    CAS  PubMed  CrossRef  Google Scholar 

  • Onoa B, Dumont S, Liphardt J, Smith SB, Tinoco I Jr, Bustamante C (2003) Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 299(5614):1892–1895

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Paul SS, Sil P, Chakraborty R, Haldar S, Chattopadhyay K (2016) Molecular crowding affects the conformational fluctuations, peroxidase activity, and folding landscape of yeast cytochrome c. Biochemistry 55(16):2332–2343

    CAS  PubMed  CrossRef  Google Scholar 

  • Pfeil SH, Wickersham CE, Hoffmann A, Lipman EA (2009) A microfluidic mixing system for single-molecule measurements. Rev Sci Instrum 80(5):3125643

    CrossRef  CAS  Google Scholar 

  • Rajagopalan S, Huang F, Fersht AR (2010) Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 39(6):2294–2303

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Roberts CJ (2007) Non-native protein aggregation kinetics. Biotechnol Bioeng 98(5):927–938

    CAS  PubMed  CrossRef  Google Scholar 

  • Ropson IJ, Frieden C (1992) Dynamic NMR spectral analysis and protein folding: identification of a highly populated folding intermediate of rat intestinal fatty acid-binding protein by 19F NMR. Proc Natl Acad Sci U S A 89(15):7222–7226

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ropson IJ, Boyer JA, Dalessio PM (2006) A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state. Biochemistry 45(8):2608–2617

    CAS  PubMed  CrossRef  Google Scholar 

  • Sarkar S, Chattopadhyay K (2014) Studies of early events of folding of a predominately beta-sheet protein using fluorescence correlation spectroscopy and other biophysical methods. Biochemistry 53(9):1393–1402

    CAS  PubMed  CrossRef  Google Scholar 

  • Sarkar-Banerjee S, Chowdhury S, Paul SS, Dutta D, Ghosh A, Chattopadhyay K (2016) The non-native helical intermediate state may accumulate at low ph in the folding and aggregation landscape of the intestinal fatty acid binding protein. Biochemistry 55(32):4457–4468

    CAS  PubMed  CrossRef  Google Scholar 

  • Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr Opin Struct Biol 23(1):36–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793

    CAS  PubMed  CrossRef  Google Scholar 

  • Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CA (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

    CAS  PubMed  CrossRef  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    CAS  PubMed  CrossRef  Google Scholar 

  • Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s amyloid beta (Abeta) prions. Proc Natl Acad Sci U S A 109(27):11025–11030

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tashiro M, Kojima M, Kihara H, Kasai K, Kamiyoshihara T, Uéda K, Shimotakahara S (2008) Characterization of fibrillation process of α-synuclein at the initial stage. Biochem Biophys Res Commun 369(3):910–914

    CAS  PubMed  CrossRef  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    CAS  PubMed  CrossRef  Google Scholar 

  • Trexler AJ, Rhoades E (2013) Function and dysfunction of alpha-synuclein: probing conformational changes and aggregation by single molecule fluorescence. Mol Neurobiol 47(2):622–631

    CAS  PubMed  CrossRef  Google Scholar 

  • Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43(8):1090–1103

    CAS  PubMed  CrossRef  Google Scholar 

  • Veldhuis G, Segers-Nolten I, Ferlemann E, Subramaniam V (2009) Single-molecule FRET reveals structural heterogeneity of SDS-bound alpha-synuclein. Chembiochem 10(3):436–439

    CAS  PubMed  CrossRef  Google Scholar 

  • Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M, Seidel CA (2006) Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal Chem 78(6):2039–2050

    CAS  PubMed  CrossRef  Google Scholar 

  • Winkler J, Seybert A, Konig L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29(5):910–923

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ziv G, Haran G (2009) Protein folding, protein collapse, and tanford’s transfer model: lessons from single-molecule FRET. J Am Chem Soc 131(8):2942–2947

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnananda Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, R., Chattopadhyay, K. (2020). Protein Folding, Dynamics and Aggregation at Single-Molecule Resolution. In: Singh, D., Tripathi, T. (eds) Frontiers in Protein Structure, Function, and Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5530-5_10

Download citation