Skip to main content

Surface O3 and Its Precursors (NOx, CO, BTEX) at a Semi-arid Site in Indo-Gangetic Plain: Characterization and Variability

  • Chapter
  • First Online:
Urban Air Quality Monitoring, Modelling and Human Exposure Assessment

Abstract

A systematic analysis of surface ozone and its precursor (NO, NO2, CO and BTEX) was carried out at a semi-urban site, Dayalbagh, Agra (27 °10′N, 78 °05′E) during January-December 2015. O3 showed maximum levels in June (46.9 ± 18.7 ppb) while minimum levels in December (16.7 ± 10.5 ppb) while NOx and CO showed maximum levels in January and December. Maximum levels of ozone in summer months correspond to high temperature and intense solar radiation while maximum levels of primary emissions (NOx and CO) in winter months were influenced by an increase in combustion sources and low planetary boundary layer height. Aromatic hydrocarbons like Benzene, Toluene, Ethyl-benzene, m,p-Xylene and o-Xylene (BTEX) are also precursors of surface ozone. The maximum ozone formation potential (OFP) was calculated for Toluene (123) and minimum for Ethyl-benzene (15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alghamdi MA, Khoder M, Abdelmaksoud AS, Harrison RM, Hussein T, Lihavainen H, Al-Jeelani H, Goknil MH, Shabbaj II, Almehmadi FM, Hyvärinen AP (2014) Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual Atmos Health 7(4):467–480

    Article  Google Scholar 

  • Baker AK, Beyersdorf AJ, Doezema LA, Katzenstein A, Meinardi S, Simpson IJ, Blake DR, Rowland FS (2008) Measurements of nonmethane hydrocarbons in 28 United States cities. Atmos Environ 42(1):170–182

    Article  Google Scholar 

  • Barletta B, Meinardi S, Rowland FS, Chan CY, Wang X, Zou S, Chan LY, Blake DR (2005) Volatile organic compounds in 43 Chinese cities. Atmos Environ 39(32):5979–5990

    Article  Google Scholar 

  • Bauri N, Bauri P, Kumar K, Jain VK (2016) Evaluation of seasonal variations in abundance of BTXE hydrocarbons and their ozone forming potential in ambient urban atmosphere of Dehradun (India). Air Qual Atmos Health 9(1):95–106

    Article  Google Scholar 

  • Carter WP (1994) Development of ozone reactivity scales for volatile organic compounds. Air Waste 44(7):881–899

    Article  Google Scholar 

  • Carter WP (2000) Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment. Contract 92(329):95–308

    Google Scholar 

  • Carter WP, Pierce JA, Luo D, Malkina IL (1995) Environmental chamber study of maximum incremental reactivities of volatile organic compounds. Atmos Environ 29(18):2499–2511

    Article  Google Scholar 

  • Chandra N, Lal S, Venkataramani S, Patra PK, Sheel V (2015) Temporal variations in CO2 and CO at Ahmedabad in western India. Atmos Chem Phys Discuss 15:32185–32238

    Article  Google Scholar 

  • Crutzen PJ (1973) Photochemical reactions initiated by and influencing ozone in the unpolluted troposphere. Tellus 26:47–57

    Google Scholar 

  • Derwent RG, Davies TJ, Delaney M, Dollard GJ, Field RA, Dumitrean P, Nason PD, Jones BMR, Pepler SA (2000) Analysis and interpretation of the continuous hourly monitoring data for 26 C2–C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmos Environ 34(2):297–312

    Article  Google Scholar 

  • Gauss M, Myhre G, Pitari G, Prather MJ, Isaksen IS, Berntsen TK, Brasseur GP, Dentener FJ, Derwent RG, Hauglustaine DA, Horowitz LW (2003) Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J Geophys Res Atmos 108(D9)

    Google Scholar 

  • Gautam R, Hsu NC, Kafatos M, Tsay SC (2007) Influences of winter haze on fog/low cloud cover over the Indo-Gangetic plains. J Geophys Res 1112:D05207. https://doi.org/10.1029/2005JD007036

    Article  Google Scholar 

  • Gelencsér A, Siszler K, Hlavay J (1997) Toluene–benzene concentration ratio as a tool for characterizing the distance from vehicular emission sources. Environ Sci Technol 31:2869–2872

    Article  Google Scholar 

  • Granier C, Petron G, Mueller JF, Brasseur G (2000) The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos Environ 34:5255–5270

    Article  Google Scholar 

  • Guo H, Wang T, Simpson IJ, Blake DR, Yu XM, Kwok YH, Li YS (2004) Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos Environ 38(27):4551–4560

    Article  Google Scholar 

  • Guo H, So KL, Simpson IJ, Barletta B, Meinardi S, Blake DR (2007) C1–C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. Atmos Environ 41(7):1456–1472

    Article  Google Scholar 

  • Han X, Naeher LP (2006) A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 32(1):106–120

    Article  Google Scholar 

  • Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885(1):129–151

    Article  Google Scholar 

  • Holloway T, Levy H II, Kasibhatla P (2000) Global distribution of carbon monoxide. J Geophys Res 105:12123–12147

    Article  Google Scholar 

  • IPCC: Climate Change (2013) The physical science basis. Cambridge University Press, Cambridge, 1552p

    Google Scholar 

  • Kerbachi R, Boughedaoui M, Bounoua L, Keddam M (2006) Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos Environ 40(21):3995–4003

    Article  Google Scholar 

  • Kerchich Y, Kerbachi R (2012) Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers. J Air Waste Manage Asso 62(12):1370–1379

    Article  Google Scholar 

  • Kumar A, Singh D, Anandam K, Kumar K, Jain VK (2017) Dynamic interaction of trace gases (VOCs, ozone, and NOx) in the rural atmosphere of sub-tropical India. Air Qual Atmos Health 1–12

    Google Scholar 

  • Lee DS, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global no, emissions and their uncertainties. Atmos Environ 31(12):1735–1749

    Article  Google Scholar 

  • Lee SC, Chiu MY, Ho KF, Zou SC, Wang X (2002) Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48(3):375–382

    Article  Google Scholar 

  • Lelieveld J, Dentener FJ (2000) What controls tropospheric ozone? J Geophys Res Atmos 105:3531–3551. https://doi.org/10.1029/1999jd901011

    Article  Google Scholar 

  • Ling ZH, Guo H, Cheng HR, Yu YF (2011) Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ Pollut 159(10):2310–2319

    Article  Google Scholar 

  • Liu PW, Yao YC, Tsai JH, Hsu YC, Chang LP, Chang KH (2008) Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci Total Environ 398(1–3):154–163

    Article  Google Scholar 

  • Majumdar D, Mukherjeea AK, Sen S (2011) BTEX in ambient air of a Metropolitan City. J Environ Prot 2(01):11

    Article  Google Scholar 

  • Marć M, Namieśnik J, Zabiegała B (2014) BTEX concentration levels in urban air in the area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual Atmos Health 7(4):489–504

    Article  Google Scholar 

  • Masih A, Lall AS, Taneja A, Singhvi R (2016) Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India. Atmos Environ 147:55–66

    Article  Google Scholar 

  • Miller L, Xu X, Grgicak-Mannion A, Brook J, Wheeler A (2012) Multi-season, multi-year concentrations and correlations amongst the BTEX group of VOCs in an urbanized industrial city. Atmos Environ 61:305–315

    Article  Google Scholar 

  • Mohan S, Ethirajan R (2012) Assessment of hazardous volatile organic compounds (VOC) in a residential area abutting a large petrochemical complex. J Trop For Environ 2(1)

    Google Scholar 

  • Na K, Kim YP, Moon KC (2003) Diurnal characteristics of volatile organic compounds in the Seoul atmosphere. Atmos Environ 37(6):733–742

    Article  Google Scholar 

  • Nelson PF, Quigley SM (1967) The m, p-xylenes: ethylbenzene ratio. A technique for estimating hydrocarbon age in ambient atmospheres. Atmos Environ 17(3):659–662

    Google Scholar 

  • Nishanth T, Praseed KM, Kumar MS, Valsaraj KT (2014) Influence of ozone precursors and PM10 on the variation of surface O3 over Kannur, India. Atmos Res 138:112–124

    Article  Google Scholar 

  • Ohura T, Amagai T, Senga Y, Fusaya M (2006) Organic air pollutants inside and outside residences in Shimizu, Japan: levels, sources and risks. Sci Total Environ 366(2):485–499

    Article  Google Scholar 

  • Ojha N, Naja M, Singh KP, Sarangi T, Kumar R, Lal S, Lawrence MG, Butler TM, Chandola HC (2012) Variabilities in ozone at a semi‐urban site in the Indo‐Gangetic Plain region: association with the meteorology and regional processes. J Geophys Res Atmos 117(D20)

    Google Scholar 

  • Pachauri RK, Meyer LA (eds) (2014) IPCC, 2014: climate change: synthesis report. Contribution of working group I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 151

    Google Scholar 

  • Parra MA, Elustondo D, Bermejo R, Santamaria JM (2009) Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO2) in a medium size city in Northern Spain. Sci Total Environ 407(3):999–1009

    Google Scholar 

  • Patokoski J, Ruuskanen TM, Kajos MK, Taipale R, Rantala P, Aalto J, Ryyppö T, Nieminen T, Hakola H, Rinne J (2015) Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II. Atmos Chem Phys 15(23):13413–13432

    Article  Google Scholar 

  • Rubin ES (2001) Introduction to engineering and the environment, 1st edn. McGraw-Hill

    Google Scholar 

  • Saunders SM, Jenkin ME, Derwent RG, Pilling MJ (2003) Protocol for the development of the master chemical mechanism, MCM v3 (part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos Chem Phys 161–180

    Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  • So KL, Wang T (2004) C3–C12 non-methane hydrocarbons in subtropical Hong Kong: spatial–temporal variations, source–receptor relationships and photochemical reactivity. Sci Total Environ 328(1):161–174

    Article  Google Scholar 

  • Tan JH, Guo SJ, Ma YL, Yang FM, He KB, Yu YC, Wang JW, Shi ZB, Chen GC (2012) Non-methane hydrocarbons and their ozone formation potentials in Foshan, China. Aerosol Air Qual. Res. 12(3):387–398

    Article  Google Scholar 

  • Tiwari V, Hanai Y, Masunaga S (2010) Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual Atmos Health 3(2):65–75

    Article  Google Scholar 

  • Ueno Y, Horiuchi T, Morimoto T, Niwa O (2001) Microfluidic device for airborne BTEX detection. Analyt Chem 73(19):4688–4693

    Article  Google Scholar 

  • Yuan B, Hu WW, Shao M, Wang M, Chen WT, Lu SH, Zeng LM, Hu M (2013) VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China. Atmos Chem Phys 13(17):8815–8832

    Article  Google Scholar 

  • Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, Chen D (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9(14):5131–5153

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Dayalbagh Educational Institute, Agra and the Head, Department of Chemistry for necessary help. The authors gratefully acknowledge the financial support for this work, which is provided by ISRO GBP under AT-CTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maharaj Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, N., Lakhani, A., Maharaj Kumari, K. (2021). Surface O3 and Its Precursors (NOx, CO, BTEX) at a Semi-arid Site in Indo-Gangetic Plain: Characterization and Variability. In: Shiva Nagendra, S.M., Schlink, U., Müller, A., Khare, M. (eds) Urban Air Quality Monitoring, Modelling and Human Exposure Assessment. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5511-4_9

Download citation

Publish with us

Policies and ethics