Skip to main content

A Comprehensive Study of Different Converter Topologies for Photovoltaic System Under Variable Environmental Conditions

  • Conference paper
  • First Online:
Advances in Electromechanical Technologies

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 988 Accesses

Abstract

This article presents an overview of various dc-dc converter for isolated and non-isolated topologies. Furthermore, the comparative analysis of various topologies using control techniques based on different parameters such as voltage gain, voltage stress, and efficiency is also discussed. On the basis of this study, authors present a reader guide to classify different types of input sources like photovoltaic (PV), wind, hybrid system etc., with voltage gain topologies for maximum power point tracking (MPPT) algorithms. Different MPPT algorithms becoming important due to their efficiency and ability to adapt and manage nonlinear parameters for efficient energy transformation are generated through clean energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari MF, Kharb RK, Luthra S, Shimmi S, Chatterji S (2013) Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique. Renew Sustain Energ Rev 27:163–174

    Google Scholar 

  2. Lingareddy V, Ravichandra G, Maddukrui P (2013) Effective strategy for MPPT in PV/Wind hybrid electric power system interconnected with electrical utility grid. Int J Adv Res Comput Sci Software Eng 3

    Google Scholar 

  3. Saravana SD (2013) Modeling and simulation of incremental conductance MPPT algorithm for photovoltaic applications. Int J Sci Eng Technol 2(7):681–685. ISSN 2277-1581

    Google Scholar 

  4. Lokanadham M, Bhaskar KV (2012) Incremental conductance based maximum power point tracking (MPPT) for photovoltaic system. Int J Eng Res Appl (IJERA) 2:1420–1424

    Google Scholar 

  5. Chukwuka C, Folly K (2013) Technical and economic modeling of the 2.5 kW grid-tie residential photovoltaic system. Int J Renew Energ Res 3:412–419

    Google Scholar 

  6. Gupta MK (2013) MPPT simulation with DC submersible solar pump using output sensing direct control method and cuk converter. Int J Renew Energ Res (IJRER) 3:186–191

    Google Scholar 

  7. Koutroulis E, Kalaitzakis K, Voulgaris NC (2001) Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans Power Electron 16:46–54

    Google Scholar 

  8. Kjaer SB, Pedersen JK, Blaabjerg F (2005) A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind Appl 41:1292–1306

    Google Scholar 

  9. Hsiao Y-T, Chen C-H (2002) Maximum power tracking for photovoltaic power system. In: Conference record of the 2002 IEEE industry applications conference. 37th IAS Annual Meeting (Cat. No. 02CH37344), pp 1035–1040

    Google Scholar 

  10. Muhamad MI, Radzi MAM, Wahab NIA, Hizam H, Mahmood MF (2014) Optimal design of hybrid renewable energy system based on solar and biomass for halal products research institute, UPM. In: 2014 IEEE innovative smart grid technologies—Asia (ISGT ASIA), pp 692–696

    Google Scholar 

  11. Qin L, Lu X (2012) Matlab/simulink-based research on maximum power point tracking of photovoltaic generation. Phys Procedia 24:10–18

    Google Scholar 

  12. Lim YH, Hamill D (2000) Simple maximum power point tracker for photovoltaic arrays. Electron Lett 36:997–999

    Google Scholar 

  13. Forouzesh M, Shen Y, Yari K, Siwakoti YP, Blaabjerg F (2018) High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems. IEEE Trans Power Electron 33:5967–5982

    Google Scholar 

  14. Mousa M, Ahmed ME, Orabi M (2011) New converter circuitry for high v applications using switched inductor multilevel converter. In: 2011 IEEE 33rd international telecommunications energy conference (INTELEC), pp 1–8

    Google Scholar 

  15. Rosas-Caro JC, Ramirez JM, Peng FZ, Valderrabano A (2010) A DC–DC multilevel boost converter. IET Power Electron 3:129–137

    Google Scholar 

  16. An L, Cheng T, Lu D-C (2018) Single-stage boost-integrated full-bridge converter with simultaneous MPPT, wide DC motor speed range and current ripple reduction. IEEE Trans Ind Electron

    Google Scholar 

  17. Kasper M, Bortis D, Kolar JW (2014) Classification and comparative evaluation of PV panel-integrated DC–DC converter concepts. IEEE Trans Power Electron 29:2511–2526

    Google Scholar 

  18. Prieto MBF, Litran SP, Aranda ED, Gomez JME (2016) New single-input, multiple-output converter topologies: combining single-switch non-isolated DC-DC converters for single-input, multiple-output applications. IEEE Ind Electron Mag 10:6–20

    Google Scholar 

  19. Mirzaei R, Ramanarayanan V (2005) Polyphase boost converter for automotive and UPF applications. In: 2005 European conference on power electronics and applications, p. 9

    Google Scholar 

  20. Ponniran B, Matsuura K, Orikawa K, Itoh J-I (2014) Size reduction of DC-DC converter using flying capacitor topology with small capacitance. IEEJ J Ind Appl 3:446–454

    Google Scholar 

  21. Maksimovic D, Cuk S (1991) Switching converters with wide DC conversion range. IEEE Trans Power Electron 6:151–157

    Google Scholar 

  22. Zhou D, Pietkiewicz A, Cuk S (1999) A three-switch high-voltage converter. IEEE Trans Power Electron 14:177–183

    Google Scholar 

  23. Li W, Lv X, Deng Y, Liu J, He X (2009) A review of non-isolated high step-up DC/DC converters in renewable energy applications. In: 2009 Twenty-fourth annual IEEE applied power electronics conference and exposition, pp 364–369

    Google Scholar 

  24. Remache SEI, Barra K (2018) Performance comparison among boost and multi level boost converters for photovoltaic grid connected system using finite set model predictive control. In: 2018 9th international renewable energy congress (IREC), pp 1–6

    Google Scholar 

  25. Middlebrook R (1988) Transformerless DC-DC converters with large conversion ratios. IEEE Trans Power Electron 3:484–488

    Google Scholar 

  26. Wen H, Su B (2016) Hybrid-mode interleaved boost converter design for fuel cell electric vehicles. Energ Convers Manag 122:477–487

    Google Scholar 

  27. Balogh L, Redl R (1993) Power-factor correction with interleaved boost converters in continuous-inductor-current mode. In: Proceedings eighth annual applied power electronics conference and exposition, pp 168–174

    Google Scholar 

  28. Redl R, Balogh L (1992) RMS, DC, peak, and harmonic currents in high-frequency power-factor correctors with capacitive energy storage. In: Proceedings of APEC’92 seventh annual applied power electronics conference and exposition, pp 533–540

    Google Scholar 

  29. Giral R, Martinez-Salamero L, Singer S (1999) Interleaved converters operation based on CMC. IEEE Trans Power Electron 14:643–652

    Google Scholar 

  30. Duarte CM, Barbi I (1996) A new family of ZVS-PWM active-clamping DC-DC boost converters: analysis, design, and experimentation. In: Proceedings of Intelec’96—international telecommunications energy conference, pp 305–312

    Google Scholar 

  31. Canesin CA, Barbi I (1995) Comparison of experimental losses among six different topologies for a 1.6 kW boost converter, using IGBTs. In: Proceedings of PESC’95—power electronics specialist conference, pp 1265–1271

    Google Scholar 

  32. Hwu K, Yau Y (2010) A KY boost converter. IEEE Trans Power Electron 25:2699–2703

    Google Scholar 

  33. Hwu K, Peng T (2012) A novel buck–boost converter combining KY and buck converters. IEEE Trans Power Electron 27:2236–2241

    Google Scholar 

  34. Noman M, Addoweesh KE, Mashaly HM (2013) Simulation and dSPACE hardware implementation of the MPPT techniques using buck boost converter. In: 2013 Africon, pp 1–9

    Google Scholar 

  35. Karami N, Moubayed N, Outbib R (2017) General review and classification of different MPPT Techniques. Renew Sustain Energy Rev 68:1–18

    Google Scholar 

  36. Das M, Agarwal V (2016) Design and analysis of a high-efficiency DC–DC converter with soft switching capability for renewable energy applications requiring high voltage gain. IEEE Trans Ind Electron 63:2936–2944

    Google Scholar 

  37. Xuewei P, Rathore AK (2014) Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles. IEEE Trans Ind Electron 61:2307–2315

    Google Scholar 

  38. Zhu X, Zhang B, Li Z, Li H, Ran L (2017) Extended switched-boost dc-dc converters adopting switched-capacitor/switched-inductor cells for high step-up conversion. IEEE J Emerg Sel Topics Power Electron 5:1020–1030

    Google Scholar 

  39. Shahir FM, Babaei E, Farsadi M (2017) Analysis and design of voltage-lift technique-based non-isolated boost dc-dc converter. IET Power Electron 11:1083–1091

    Google Scholar 

  40. Knecht O, Bortis D, Kolar JW (2018) ZVS modulation scheme for reduced complexity clamp-switch TCM dc-dc boost converter. IEEE Trans Power Electron 33:4204–4214

    Google Scholar 

  41. Shalini NP, Dhanalakshmi R (2017) Soft switching based single switch integrated converter with high voltage gain for renewable energy conversion. In: 2017 International conference on smart technologies for smart nation (SmartTechCon), pp 40–45

    Google Scholar 

  42. Tseng K-C, Chang S-Y, Cheng C-A (2019) Novel isolated bidirectional interleaved converter for renewable energy applications. IEEE Trans Ind Electron

    Google Scholar 

  43. Liao Z, Lei Y, Pilawa-Podgurski RC (2019) Analysis and design of a high power density flying-capacitor multilevel boost converter for high step-up conversion. IEEE Trans Power Electron 34:4087–4099

    Google Scholar 

  44. Addula SR, Prabhakar M (2017) A soft switched interleaved high gain DC-DC converter. J Eng Sci Technol 12:2346–2359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, P., Shimi, S.L. (2021). A Comprehensive Study of Different Converter Topologies for Photovoltaic System Under Variable Environmental Conditions. In: Pandey, V.C., Pandey, P.M., Garg, S.K. (eds) Advances in Electromechanical Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5463-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5463-6_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5462-9

  • Online ISBN: 978-981-15-5463-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics