Skip to main content

Effect of the Variation of the Electrode Geometrical Configuration on the Electric Wind Velocity Produced by an Electric Corona Discharge

  • Conference paper
  • First Online:
ICREEC 2019

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

In this work, we determine precisely the electric wind velocity, produced by a direct current (DC) corona discharge in air, using three electrode geometrical configurations: ‘wire-to-plate’ (a), ‘two wires-to-plate’ (b) and ‘three wires-to-plate’ (c). Each electrode wire is subjected to the same high positive voltage while the plate is grounded. The electric wind velocity is determined through a mathematical model based on the resolution of Navier-Stokes equation, in which a source term consisting in the electro-hydrodynamic (EHD) force, already established by our group in the form of a simplified analytical expression, is used. The results found allow to compare the profile of the electric wind produced by the corona discharge for the three electrode geometrical configurations ((a), (b) and (c)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Béquin, K. Castor, J. Scholten, Electric wind characterisation in negative point-to-plane corona discharges in air. Eur. Phys. J. - Appl. Phys. 22, 41–49 (2003)

    Article  Google Scholar 

  2. D.F. Colas, A. Ferret, D.Z. Pai, D.A. Lacoste, C.O. Laux, Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure. J. Appl. Phys. 108, 103306 (2010)

    Article  Google Scholar 

  3. C. Kim, D. Park, K.C. Noh, J. Hwang, Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration. J. Electrost. 68, 36–41 (2010)

    Article  Google Scholar 

  4. E. Moreau, C. Louste, G. Touchard, Electric wind induced by sliding discharge in air at atmospheric pressure. J. Electrost. 66, 107–114 (2008)

    Article  Google Scholar 

  5. M. Rickard, D. Dunn-Rankin, F. Weinberg, F. Carleton, Characterization of ionic wind velocity. J. Electrost. 63, 711–716 (2005)

    Article  Google Scholar 

  6. J. Jolibois, N. Zouzou, E. Moreau, J.M. Tatibouët, Generation of surface DBD on rough dielectric: electrical properties, discharge-induced electric wind and generated chemical species. J. Electrost. 69, 522–528 (2011)

    Article  Google Scholar 

  7. M. Robinson, A history of the electric wind. Am. J. Phys. 30, 366–372 (1962)

    Article  Google Scholar 

  8. B. Kim, S. Lee, Y.S. Lee, K.H. Kang, Ion wind generation and the application to cooling. J. Electrost. 70, 438–444 (2012)

    Article  Google Scholar 

  9. M. Knap, J. Duga, T.C. Lui, Ionic wind generator on LED lighting application, in 20th International Workshop on Thermal Investigations of ICs and Systems (2014), pp. 1–5. https://doi.org/10.1109/therminic.2014.6972502

  10. L. Léger, E. Moreau, G. Artana, G. Touchard, Influence of a DC corona discharge on the airflow along an inclined flat plate. J. Electrost. 51–52, 300–306 (2001)

    Article  Google Scholar 

  11. E.D. Fylladitakis, M.P. Theodoridis, A.X. Moronis, Review on the history, research, and applications of electrohydrodynamics. IEEE Trans. Plasma Sci. 42, 358–375 (2014)

    Google Scholar 

  12. E. Timmermann, F. Prehn, M. Schmidt, H. Höft, R. Brandenburg, M. Kettlitz, Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations. J. Phys. D: Appl. Phys. 51, 164003 (2018)

    Google Scholar 

  13. T.P. Ryan, K.R. Stalder, Overview of current applications in plasma medicine. Proc. SPIE 10066, 1006606 (2017). https://doi.org/10.1117/12.2255792

  14. M. Robinson, Movement of air in the electric wind of the corona discharge. Trans. Am. Inst. Electr. Eng. Part Commun. Electron. 80, 143–150 (1961)

    Google Scholar 

  15. D. Lacoste, D. Pai, C. Laux, Ion wind effects in a positive DC corona discharge in atmospheric pressure air, in 42nd AIAA Aerospace Sciences Meeting and Exhibit (2004), p. 354

    Google Scholar 

  16. H. Kawamoto, H. Yasuda, S. Umezu, Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system. J. Electrostat. 64, 400–407 (2006)

    Google Scholar 

  17. S. El-Khabiry, G.M. Colver, Drag reduction by dc corona discharge along an electrically conductive flat plate for small reynolds number flow. Phys. Fluids 9, 587–599 (1997)

    Article  Google Scholar 

  18. J.F. Loiseau, J. Batina, F. Noël, R. Peyrous, Hydrodynamical simulation of the electric wind generated by successive streamers in a point-to-plane reactor. J. Phys. Appl. Phys. 35, 1020 (2002)

    Article  Google Scholar 

  19. L. Zhao, K. Adamiak, Effects of EHD and external airflows on electric corona discharge in point-plane/mesh configurations. IEEE Trans. Ind. Appl. 45, 16–21 (2009)

    Article  Google Scholar 

  20. L. Zhao, K. Adamiak, Numerical simulation of the effect of EHD flow on corona discharge in compressed air. IEEE Trans. Ind. Appl. 49, 298–304 (2013)

    Article  Google Scholar 

  21. R.S. Islamov, An analytical model of the ionic wind in a regular ultracorona. J. Phys. Appl. Phys. 46, 375204 (2013)

    Article  Google Scholar 

  22. M. Molki, P. Damronglerd, Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts. Heat Transf. Eng. 27, 35–45 (2006)

    Article  Google Scholar 

  23. K. Yanallah, F. Pontiga, M.R. Bouazza, J.H. Chen, The effect of the electric wind on the spatial distribution of chemical species in the positive corona discharge. J. Phys. Appl. Phys. 50, 335203 (2017)

    Article  Google Scholar 

  24. M.R. Bouazza, K. Yanallah, F. Pontiga, J.H. Chen, A simplified formulation of wire-plate corona discharge in air: application to the ion wind simulation. J. Electrost. 92, 54–65 (2018)

    Article  Google Scholar 

  25. J.P. Boeuf, L.C. Pitchford, Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J. Appl. Phys. 97, 103307 (2005)

    Article  Google Scholar 

  26. J. Chen, J.H. Davidson, Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions. Plasma Chem. Plasma Process. 22, 199–224 (2002)

    Article  Google Scholar 

  27. K. Yanallah, F. Pontiga, A. Fernández-Rueda, A. Castellanos, Experimental investigation and numerical modelling of positive corona discharge: ozone generation. J. Phys. Appl. Phys. 42, 065202 (2009)

    Article  Google Scholar 

  28. K. Yanallah, F. Pontiga, J.H. Chen, A semi-analytical study of positive corona discharge in wire–plane electrode configuration. J. Phys. Appl. Phys. 46, 345202 (2013)

    Article  Google Scholar 

  29. S. Ould Ahmedou, M. Havet, Effect of process parameters on the EHD airflow. J. Electrost. 67, 222–227 (2009)

    Article  Google Scholar 

  30. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, London, 2007)

    Google Scholar 

  31. W. Deutsch, Über die dichteverteilung unipolarer ionenströme. Ann. Phys. 408, 588–612 (1933)

    Article  Google Scholar 

  32. R.S. Sigmond, The unipolar corona space charge flow problem. J. Electrost. 18, 249–272 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bouadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouadi, M., Yanallah, K., Bouazza, M.R., Pontiga, F. (2020). Effect of the Variation of the Electrode Geometrical Configuration on the Electric Wind Velocity Produced by an Electric Corona Discharge. In: Belasri, A., Beldjilali, S. (eds) ICREEC 2019. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5444-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5444-5_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5443-8

  • Online ISBN: 978-981-15-5444-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics