Skip to main content

Discharge Parameters Effect on Joule Heating Phenomenon in O2 DBD for Ozone Generation

  • Conference paper
  • First Online:
ICREEC 2019

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 894 Accesses

Abstract

The aim of the present work is to investigate the effect of gas heating distribution in the gap of dielectric barrier discharge DBD reactor in pure oxygen gas for ozone production. The fluid model combines the means physical processes in the DBD discharge for ozone generation, and the heat transport equation resolution were used for determining the gas temperature profile. The numerical findings of the model are able to predict the evolution of gas temperature in O2 DBD reactor. In order to clarify the influence of the operating conditions of the discharge on the gas temperature, we study this instability phenomenon by varying of the applied voltage, the pressure, the frequency, and the pressure to optimize ozone generation. The results obtained from this study show clearly the rise in gas temperature is mainly depends to the high values of deposited power in DBD reactor. The increase of gas heating in the discharge can affects significantly the efficiency of ozone production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Šimek, S. Pekàrek, V. Prukner, Influence of power modulation on ozone production using an AC surface dielectric barrier discharge in oxygen. Plasma Chem. Plasma Process. 30, 607–617 (2010)

    Article  Google Scholar 

  2. I.D. Chalmers, R.C. Baird, T. Kelly, Control of an ozone generator-theory and practice. Meas. Sci. Technol. 9, 983–988 (1998)

    Article  Google Scholar 

  3. K. Teranishi, N. Shimomura, S. Suzuki, H. Itoh, Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: effect of dielectric electrode materials on ozone generation. Plasma Sources Sci. Technol. 18, 045011 (2009). (10 p.)

    Article  Google Scholar 

  4. W. Linsheng, P. Bangfa, L. Ming, Z. Yafang, H. Zhaoji, Dynamic characteristics of positive pulsed dielectric barrier discharge for ozone generation in air. Plasma Sci. Technol. 18, 147 (2016)

    Article  Google Scholar 

  5. N. Mastanaiah, P. Banerjee, J.A. Johnson, S. Roy, Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma. Plasma Process. Polym. 10, 1120–1133 (2013)

    Article  Google Scholar 

  6. D.C. Seok, H.Y. Jeong, T. Lho, Y.H. Jeong, DBD parameter for production of high ozone concentration, in 31st ICPIG, Granada, Spain, 14–19 July 2013

    Google Scholar 

  7. W.J.M. Samaranayake, Y. Miyahara, T. Namihira, S. Katsuki, R. Hackamland, H. Akiyama, Ozone production using pulsed dielectric barrier discharge in oxygen. IEEE Trans. Dielectr. Electr. Insul. 7(6), 849–854 (2000)

    Article  Google Scholar 

  8. T.-L. Sung, S. Teii, C.-M. Liu, R.-C. Hsiao, P.-C. Chen, Y.-H. Wu, C.-K. Yang, K. Teii, S. Ono, K. Ebihara, Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer. Vacuum 90, 65–69 (2013)

    Article  Google Scholar 

  9. V.-I. Gibalov, G.-J. Pietsch, On the performance of ozone generators working with dielectric barrier discharges. Ozone: Sci. Eng. 28, 119–124 (2006)

    Article  Google Scholar 

  10. S. Zhang, W. Gaens, B. Gessel, S. Hofmann, E. Veldhuizen, A. Bogaerts, P. Bruggeman, Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms. J. Phys. D: Appl. Phys. 46, 205202 (2013). (12 p.)

    Article  Google Scholar 

  11. M. Benyamina, K. Khodja, F. Ghaleb, A. Belasri, Influence of the gas temperature in ozone production of mixture N2-O2. J. Chem. Chem. Eng. 6, 391–395 (2012)

    Google Scholar 

  12. U. Kogelschatz, B. Eliasson, W. Egli, Dielectric-barrier discharges principle and applications. J. Phys. IV (Colloq.) 7, 47–66 (1997)

    Google Scholar 

  13. K. Ohe, K. Kamiya, T. Kimura, Improvement of ozone yielding rate in atmospheric pressure barrier discharges using a time-modulated power supply. IEEE Trans. Plasma Sci. 27, 1582–1587 (1999)

    Article  Google Scholar 

  14. M. Šimek, M. Člupek, Efficiency of ozone production by pulsed positive corona discharge in synthetic air. J. Phys. D: Appl. Phys. 35, 1171–1175 (2002)

    Article  Google Scholar 

  15. L.-S. Wei, B.-F. Peng, M. Li, Y.-F. Zhang, A numerical study of species and electric field distributions in pulsed DBD in oxygen for ozone generation. Vacuum 125, 123–132 (2016)

    Article  Google Scholar 

  16. Y.-M. Sung, T. Sakoda, Optimum conditions for ozone formation in a micro dielectric barrier discharge. Surf. Coat. Technol. 197, 148–153 (2005)

    Article  Google Scholar 

  17. B. Eliasson, M. Hirth, U. Kogelschatz, Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 20, 1421–1437 (1987)

    Article  Google Scholar 

  18. T. Murata, Y. Okita, M. Noguchi, I. Takase, Basic parameters of coplanar discharge ozone generator. Ozone: Sci. Eng. 26, 429–442 (2004)

    Article  Google Scholar 

  19. S. Jodzis, J. Petryk, Gas temperature in an ozonizer. The computer modeling of an actual discharge system. IEEE Trans. Plasma Sci. 39(11), 2020–2021 (2011)

    Google Scholar 

  20. S. Boonduang, P. Limsuwan, Effect of generating heat on ozone generation in dielectric cylinder-cylinder DBD ozone generator. Energy Power Eng. 5, 523–527 (2013)

    Article  Google Scholar 

  21. J. Kitayama, M. Kuzumoto, Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge. J. Phys. D: Appl. Phys. 30, 2453–2461 (1997)

    Article  Google Scholar 

  22. K. Yanallah, F. Pontiga, A. Fernandez-Rueda, A. Castellanos, A. Belasri, Ozone generation by negative corona discharge: the effect of joule heating. J. Phys. D: Appl. Phys. 41, 195206 (2008)

    Article  Google Scholar 

  23. A. Benmoussa, A. Belasri, F. Ghaleb, Z. Harrache, Gas heating phenomenon in rare gas dielectric barrier discharge for excimer lamps. IEEE Trans. Plasma Sci. 42(3), 706–711 (2014)

    Article  Google Scholar 

  24. A. Benmoussa, A. Belasri, Z. Harrache, Numerical investigation of gas heating effect in dielectric barrier discharge for Ne-Xe excilamp. Curr. Appl. Phys. 17, 479–483 (2017)

    Article  Google Scholar 

  25. E.W. Lemmon, R.T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermo Phys. 25(1), 21–69 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Benmoussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benmoussa, A., Belasri, A. (2020). Discharge Parameters Effect on Joule Heating Phenomenon in O2 DBD for Ozone Generation. In: Belasri, A., Beldjilali, S. (eds) ICREEC 2019. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5444-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5444-5_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5443-8

  • Online ISBN: 978-981-15-5444-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics