Skip to main content

Rationally Designed DNA Assemblies for Biomedical Application

  • Chapter
  • First Online:
Nanotechnology in Regenerative Medicine and Drug Delivery Therapy
  • 750 Accesses

Abstract

Based on Watson–Crick base pairing rules, DNA molecules can work as building blocks to fabricate programmable and functional nanostructures. In recent decades, DNA nanotechnology has been developed to construct sophisticated structures and artificial mechanical devices, giving rise to a variety of desired functions and fascinating applications. Featured with rationally designed geometries, precise spatial addressability, as well as marked biocompatibility, DNA-based nanostructures provide promising candidates for drug delivery. In this chapter, we summarize the recent advances of self-assembled DNA-base nanomaterials for the biomedical applications, including molecular imaging and drug delivery both in vitro and in vivo. The remaining challenges and open opportunities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N.C. Seeman, Nucleic-acid junctions and lattices. J. Theor. Biol. 99(2), 237–247 (1982)

    CAS  PubMed  Google Scholar 

  2. J.H. Chen, N.C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631–633 (1991)

    CAS  PubMed  Google Scholar 

  3. R.P. Goodman, R.M. Berry, A.J. Turberfield, The single-step synthesis of a DNA tetrahedron. Chem. Commun. 12, 1372–1373 (2004)

    Google Scholar 

  4. Y.W. Zhang, N.C. Seeman, Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116(5), 1661–1669 (1994)

    CAS  Google Scholar 

  5. M.M. Ali et al., Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43(10), 3324–3341 (2014)

    CAS  PubMed  Google Scholar 

  6. C. Lin et al., DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7(8), 1641–1647 (2006)

    CAS  PubMed  Google Scholar 

  7. F. Zhang, Y. Liu, H. Yan, Complex Archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc. 135(20), 7458–7461 (2013)

    CAS  PubMed  Google Scholar 

  8. Y.G. Li et al., Controlled assembly of dendrimer-like DNA. Nat. Mater. 3(1), 38–42 (2004)

    CAS  PubMed  Google Scholar 

  9. S.H. Um et al., Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5(10), 797–801 (2006)

    CAS  PubMed  Google Scholar 

  10. P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    CAS  PubMed  Google Scholar 

  11. A.V. Pinheiro et al., Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. F. Hong et al., DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117(20), 12584–12640 (2017)

    CAS  PubMed  Google Scholar 

  13. N.C. Seeman, H.F. Sleiman, DNA nanotechnology. Nat. Rev. Mater. 3(1), 17068 (2018)

    CAS  Google Scholar 

  14. T.J. Fu, N.C. Seeman, DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)

    CAS  PubMed  Google Scholar 

  15. T.H. LaBean et al., Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122(9), 1848–1860 (2000)

    CAS  Google Scholar 

  16. C.D. Mao et al., Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

    CAS  PubMed  Google Scholar 

  17. H. Yan et al., Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. U. S. A. 100(14), 8103–8108 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. D.Y. Yang et al., DNA materials: bridging nanotechnology and biotechnology. Acc. Chem. Res. 47(6), 1902–1911 (2014)

    CAS  PubMed  Google Scholar 

  19. H.-M. Meng et al., DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano 8(6), 6171–6181 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Y.H. Roh et al., Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics. ACS Nano 8(10), 9767–9780 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Hu et al., DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem. Int. Ed. 53(23), 5821–5826 (2014)

    CAS  Google Scholar 

  22. G.Z. Zhu et al., Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc. 135(44), 16438–16445 (2013)

    CAS  PubMed  Google Scholar 

  23. W.J. Sun et al., Cocoon-like self-degradable DNA Nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 136(42), 14722–14725 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. G.Z. Zhu et al., Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat. Commun. 8, 1482 (2017)

    PubMed  PubMed Central  Google Scholar 

  25. S.M. Douglas et al., Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. D.R. Han et al., DNA origami with complex curvatures in three-dimensional space. Science 332(6027), 342–346 (2011)

    CAS  PubMed  Google Scholar 

  27. H. Dietz, S.M. Douglas, W.M. Shih, Folding DNA into twisted and curved nanoscale shapes. Science 325(5941), 725–730 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. D.R. Han et al., Single-stranded DNA and RNA origami. Science 358(6369), eaao4648 (2017)

    Google Scholar 

  29. F. Praetorius, H. Dietz, Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355(6331), eaam5488 (2017)

    PubMed  Google Scholar 

  30. B. Wei, M.J. Dai, P. Yin, Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Y.G. Ke et al., Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

    CAS  PubMed  Google Scholar 

  32. V.P. Chauhan, R.K. Jain, Strategies for advancing cancer nanomedicine. Nat. Mater. 12(11), 958–962 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. A.S. Thakor, S.S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63(6), 395–418 (2013)

    PubMed  Google Scholar 

  34. B. Yurke et al., A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    CAS  PubMed  Google Scholar 

  35. H. Yan et al., A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)

    CAS  PubMed  Google Scholar 

  36. T. Omabegho, R. Sha, N.C. Seeman, A bipedal DNA Brownian motor with coordinated legs. Science 324(5923), 67–71 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. S.F.J. Wickham et al., A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012)

    CAS  PubMed  Google Scholar 

  38. T. Gerling et al., Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347(6229), 1446–1452 (2015)

    CAS  PubMed  Google Scholar 

  39. A.J. Thubagere et al., A cargo-sorting DNA robot. Science 357(6356), eaan6558 (2017)

    PubMed  Google Scholar 

  40. E. Kopperger et al., A self-assembled nanoscale robotic arm controlled by electric fields. Science 359(6373), 296–301 (2018)

    CAS  PubMed  Google Scholar 

  41. Q. Jiang et al., DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134(32), 13396–13403 (2012)

    CAS  PubMed  Google Scholar 

  42. P.D. Halley et al., Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 12(3), 308–320 (2016)

    CAS  PubMed  Google Scholar 

  43. L. Xu et al., Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett. 12(4), 2003–2012 (2012)

    CAS  PubMed  Google Scholar 

  44. Q. Zhang et al., DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8(7), 6633–6643 (2014)

    CAS  PubMed  Google Scholar 

  45. Q. Mou et al., DNA Trojan horses: self-assembled floxuridine-containing DNA polyhedra for cancer therapy. Angew. Chem. 129(41), 12702–12706 (2017)

    Google Scholar 

  46. J. Zhang et al., A Camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angew. Chem. Int. Ed. 58(39)

    Google Scholar 

  47. T. Wu et al., A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery. Angew. Chem. Int. Ed. Engl. 58(40), 14224–14228 (2019)

    CAS  PubMed  Google Scholar 

  48. S. Surana, A.R. Shenoy, Y. Krishnan, Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10(9), 741–747 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Li et al., Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5(11), 8783–8789 (2011)

    CAS  PubMed  Google Scholar 

  50. V.J. Schüller et al., Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5(12), 9696–9702 (2011)

    PubMed  Google Scholar 

  51. Y. Qu et al., Self-assembled DNA dendrimer nanoparticle for efficient delivery of Immunostimulatory CpG motifs. ACS Appl. Mater. Interfaces 9(24), 20324–20329 (2017)

    CAS  PubMed  Google Scholar 

  52. S. Sellner et al., DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials 53, 453–463 (2015)

    CAS  PubMed  Google Scholar 

  53. Y. Liu et al., Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Adv. Drug Deliv. Rev. 115, 98–114 (2017)

    CAS  PubMed  Google Scholar 

  54. J.J. Fakhoury et al., Development and characterization of gene silencing DNA cages. Biomacromolecules 15(1), 276–282 (2014)

    CAS  PubMed  Google Scholar 

  55. J. Li et al., Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc. 137(4), 1412–1415 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. J. Yang et al., Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery. ACS Appl. Mater. Interfaces 10(28), 23693–23699 (2018)

    CAS  PubMed  Google Scholar 

  57. K.E. Bujold, J.C.C. Hsu, H.F. Sleiman, Optimized DNA “Nanosuitcases” for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 138(42), 14030–14038 (2016)

    CAS  PubMed  Google Scholar 

  58. H. Lee et al., Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. K. Ren et al., A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. M.A. Rahman et al., Systemic delivery of Bc12-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew. Chem. Int. Ed. 56(50), 16023–16027 (2017)

    CAS  Google Scholar 

  61. J. Liu et al., A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 18, 3328–3334 (2018)

    CAS  PubMed  Google Scholar 

  62. J. Liu et al., A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew. Chem. Int. Ed. 57(47), 15486–15490 (2018)

    CAS  Google Scholar 

  63. D. Bhatia et al., A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011)

    PubMed  Google Scholar 

  64. D. Bhatia et al., Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol. 11, 1112–1119 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. P. Wang et al., Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 140(7), 2478–2484 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Q. Jiang et al., A self-assembled DNA origami-gold nanorod complex for cancer theranostics. Small 11(38), 5134–5141 (2015)

    CAS  PubMed  Google Scholar 

  67. Y. Du et al., DNA-nanostructure–gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater. 28(45), 10000–10007 (2016)

    CAS  PubMed  Google Scholar 

  68. L. Song et al., DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale 9(23), 7750–7754 (2017)

    CAS  PubMed  Google Scholar 

  69. Y. Xie et al., Real-time observations on crystallization of gold nanorods into spiral or lamellar superlattices. Chem. Commun. (Camb.) 48(15), 2128–2130 (2012)

    CAS  Google Scholar 

  70. C. Wang et al., Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 28(40), 8912–8920 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. W. Sun et al., Self-assembled DNA Nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem. Int. Ed. 54(41), 12029–12033 (2015)

    CAS  Google Scholar 

  72. E. Kim et al., One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery. Adv. Mater. 29(26), 1701086 (2017)

    Google Scholar 

  73. S. Zhao et al., Efficient intracellular delivery of RNase a using DNA origami carriers. ACS Appl. Mater. Interfaces 11(12), 11112–11118 (2019)

    CAS  PubMed  Google Scholar 

  74. D.H. Schaffert et al., Intracellular delivery of a planar DNA origami structure by the transferrin-receptor internalization pathway. Small 12(19), 2634–2640 (2016)

    CAS  PubMed  Google Scholar 

  75. J. Li et al., Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017)

    PubMed  PubMed Central  Google Scholar 

  76. S. Modi et al., A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009)

    CAS  PubMed  Google Scholar 

  77. S. Modi et al., Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8(6), 459–467 (2013)

    CAS  PubMed  Google Scholar 

  78. S. Saha et al., A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645 (2015)

    CAS  PubMed  Google Scholar 

  79. K. Leung et al., A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14(2), 176–183 (2019)

    CAS  PubMed  Google Scholar 

  80. K. Dan et al., DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 14(3), 252–259 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. A.T. Veetil et al., Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 12, 1183–1189 (2017)

    CAS  PubMed  Google Scholar 

  82. S.M. Douglas, I. Bachelet, G.M. Church, A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    CAS  PubMed  Google Scholar 

  83. G. Grossi et al., Control of enzyme reactions by a reconfigurable DNA nanovault. Nat. Commun. 8(1), 992 (2017)

    PubMed  PubMed Central  Google Scholar 

  84. Y. Amir et al., Universal compting by DNA origami robots in a living animal. Nat. Nanotechnol. 9(5), 353–357 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. S. Arnon et al., Thought-controlled nanoscale robots in a living host. PLoS One 11(8), e0161227 (2016)

    PubMed  PubMed Central  Google Scholar 

  86. S. Li et al., A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36(3), 258–264 (2018)

    CAS  PubMed  Google Scholar 

  87. M.M.C. Bastings et al., Modulation of the cellular uptake of DNA origami through control over mass and shape. Nano Lett. 18(6), 3557–3564 (2018)

    CAS  PubMed  Google Scholar 

  88. H. Ding et al., DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Central Sci. 4(10), 1344–1351 (2018)

    CAS  Google Scholar 

  89. D. Jiang et al., DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2(11), 865–877 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. S.D. Perrault, W.M. Shih, Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8(5), 5132–5140 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. N. Ponnuswamy et al., Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. N.P. Agarwal et al., Block copolymer Micellization as a protection strategy for DNA origami. Angew. Chem. Int. Ed. 56(20), 5460–5464 (2017)

    CAS  Google Scholar 

  93. F. Praetorius et al., Biotechnological mass production of DNA origami. Nature 552(7683), 84–87 (2017)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, Q., Liu, Q., Wang, Z., Ding, B. (2020). Rationally Designed DNA Assemblies for Biomedical Application. In: Xu, H., Gu, N. (eds) Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5386-8_6

Download citation

Publish with us

Policies and ethics