Skip to main content

Nanotechnology in Dental Therapy and Oral Tissue Regeneration

  • Chapter
  • First Online:
Nanotechnology in Regenerative Medicine and Drug Delivery Therapy

Abstract

The emergence of nanotechnology within dental fields has sparked great interest in their potential applications. This chapter focuses on the application of nanotechnology in dental therapy and oral tissue regeneration, especially in dental materials. Nowadays, various nano-additives have been introduced into many commercially available products, making it overwhelmingly difficult for both dentists and patients to properly choose from. Actually, the choice of nanomaterials is dependent on the clinical scenario and the tooth to be restored, paying close attention to esthetic demand, loading, and the presence of any risk factors. In this chapter, we will introduce “Nanotechnology in tooth defect therapy,” “Nanotechnology in oral tissue regeneration,” and “Nanotechnology in antibacterial for oral disease and therapy.” Future direction is to develop more efficient and cost-effective nano-biosensing materials to treat dental diseases intelligently. For example, the materials have the potential to deliver drugs to disrupt biofilm formation in order to reduce the incidence of caries and periodontal disease and also can be used for tooth defect filling. Ultimately, it may be possible to achieve the pinnacle goal, tooth regeneration. Therefore, this chapter will help the readers gain a general grasp about the current application of nanotechnology in dental fields, relative benefits and limitations, and future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.B. Mitra et al., An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc. 134, 1382–1390 (2003)

    CAS  PubMed  Google Scholar 

  2. V. Varlan et al., Performances of dental materials (amalgam versus composite). Int. Metalurgia 13, 35–39 (2009)

    Google Scholar 

  3. D.W. Jones, A Canadian perspective on the dental amalgam issue. Br. Dent. J. 184, 581–586 (1998)

    CAS  PubMed  Google Scholar 

  4. P.S. Stein et al., Composite resin in medicine and dentistry. J. Long Term Eff. Med. Implants 15, 641–654 (2005)

    CAS  PubMed  Google Scholar 

  5. F. Lutz et al., A classification and evaluation of composite resin systems. J. Prosthet. Dent. 50, 480–488 (1983)

    CAS  PubMed  Google Scholar 

  6. R. Guggenberger et al., New trends in glass-ionomer chemistry. Biomaterials 19, 479–483 (1998)

    CAS  PubMed  Google Scholar 

  7. Z. Khurshid et al., Advances in nanotechnology for restorative dentistry. Materials 8, 717–731 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. S.A. Saunders, Current practicality of nanotechnology in dentistry. part 1: focus on nanocomposite restoratives and biomimetics. Clin. Cosmet. Investig. Dent. 1, 47–61 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. M.H. Chen, Update on dental nanocomposites. J. Dent. Res. 89, 549–560 (2010)

    CAS  PubMed  Google Scholar 

  10. N. Kumar et al., Essentials in nanoscience and nanotechnology. Appl. Nanotechnol., 361–418 (2016). https://doi.org/10.1002/9781119096122

  11. N.B. Cramer et al., Recent advances and developments in composite dental restorative materials. J. Dent. Res. 90, 402–416 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. S.T. Ozak et al., Nanotechnology and dentistry. Eur. J. Dent. 7, 145–151 (2013)

    PubMed  PubMed Central  Google Scholar 

  13. Y. Xia et al., Nanoparticle-reinforced resin-based dental composites. J. Dent. 36, 450–455 (2008)

    CAS  PubMed  Google Scholar 

  14. Y. Hua et al., Micromechanical analysis of nanoparticle-reinforced dental composites. Int. J. Eng. Sci. 69, 69–76 (2013)

    CAS  Google Scholar 

  15. N.C. Lawson et al., Wear of nanofilled dental composites at varying filler concentrations. J. Biomed. Mater. Res. B Appl. Biomater. 103, 424–429 (2015)

    PubMed  Google Scholar 

  16. P. Pallav et al., The influence of admixing microfiller to small-particle composite resin on wear, tensile strength, hardness, and surface roughness. J. Dent. Res. 68, 489–490 (1989)

    CAS  PubMed  Google Scholar 

  17. Y. Liu et al., Effect of nano SiO2 particles on the morphology and mechanical properties of POSS nanocomposite dental resins. J. Nano Res. 16, 2736 (2014)

    Google Scholar 

  18. M. Hosseinalipour et al., Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J. Prosthodont. 19, 112–117 (2010)

    PubMed  Google Scholar 

  19. K.H.H. Xu et al., Novel CaF2 nanocomposite with high strength and fluoride ion release. J. Dent. Res. 89, 739–745 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. K.H.H. Xu et al., Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials 29, 4261–4267 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. K.J. Anusavice et al., Effect of CaF2 content on rate of fluoride release from filled resins. J. Dent. Res. 84, 440–444 (2005)

    CAS  PubMed  Google Scholar 

  22. M. Basso, Teeth restoration using a high-viscosity glass ionomer cement: the Equia® system. J. Min. Int. Dent. 4, 74–76 (2011)

    Google Scholar 

  23. K. Friedl et al., Clinical performance of a new glass ionomer-based restoration system: a retrospective cohort study. J. Dent. Mater. 27, 1031–1037 (2011)

    CAS  Google Scholar 

  24. A.S. Khan et al., Synthesis and characterizations of a fluoride-releasing dental restorative material. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 3458–3464 (2013)

    CAS  PubMed  Google Scholar 

  25. R.L. Sakaguchi et al., Craig’s restorative dental materials, vol 213 (Elsevier Ltd, Oxford, 2012), p. 90

    Google Scholar 

  26. A. Moshaverinia et al., Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 4, 432–440 (2008)

    CAS  PubMed  Google Scholar 

  27. N.A.M. Ghazali et al., Fabrication of modified GIC: GIC-nanoSiO2-HA-ZrO2 using two different mixing methods. AIP Conf. Proc. 1901(1), 020007 (2017)

    Google Scholar 

  28. J.F. McCabe et al., Smart materials in dentistry--future prospects. Dent. Mater. J. 28, 37–43 (2009)

    PubMed  Google Scholar 

  29. M. Berger, A gold filling from the nanotechnology dentist. Nanowerk. Jan 03 (2008)

    Google Scholar 

  30. F. Zhang et al., Surface modification and microstructure of single-walled carbon nanotubes for dental composite resin. J. Biomed. Eng. 23, 1279–1283 (2006)

    Google Scholar 

  31. C. Lynch, Vital guide to adhesive dentistry. Vital 3, 21–24 (2006)

    Google Scholar 

  32. S.H. Dickens et al., Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents. Dent. Mater. 21, 354–364 (2005)

    CAS  PubMed  Google Scholar 

  33. B.H. Cho et al., Effects of the acetone content of single solution dentin bonding agents on the adhesive layer thickness and the microtensile bond strength. Dent. Mater. 20, 107–115 (2004)

    CAS  PubMed  Google Scholar 

  34. A.R. Cocco et al., Addition of nanoparticles for development of radiopaque dental adhesives. Int. J. Adhesion Adhesives 80, 122–127 (2018)

    CAS  Google Scholar 

  35. J.S. Kim et al., Effect of the hydrophilic nanofiller loading on the mechanical properties and the microtensile bond strength of an ethanol-based one-bottle dentin adhesive. J. Biomed. Mater. Res. B Appl. Biomater. 72, 284–291 (2005)

    PubMed  Google Scholar 

  36. U. Lohbauer et al., Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 6, 4539–4546 (2010)

    CAS  PubMed  Google Scholar 

  37. M. Miyazaki et al., Influence of filler addition to bonding agents on shear bond strength to bovine dentin. Dent. Mater. 11, 234–238 (1995)

    CAS  PubMed  Google Scholar 

  38. M. Sadat-Shojai et al., Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent. Mater. 26, 471–482 (2010)

    CAS  PubMed  Google Scholar 

  39. E.M. Abdelaziz et al., Viscosity and micro-tensile bond strength of total-etch adhesive system reinforced with hydroxyapatite nano-particles. Mansoura J. Dent. 1, 115–118 (2014)

    Google Scholar 

  40. L. Zhang et al., Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J. Dent. 43, 1587–1595 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. N.L.V. Carreño et al., YbF3/SiO2 fillers as radiopacifiers in a dental adhesive resin. Nano-micro Lett. 4, 3 (2012)

    Google Scholar 

  42. E.A. Koulaouzidou et al., Cytotoxicity of dental adhesives in vitro. Eur. J. Dent. 3, 3–9 (2009)

    PubMed  PubMed Central  Google Scholar 

  43. Y. Li et al., Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dent. Mater. 34, 1310–1322 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Ji et al., Nanomagnetic-mediated drug delivery for the treatment of dental disease. Nanomedicine 14, 919–927 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. L. Breschi et al., Dental adhesion review: aging and stability of the bonded interface. Dent. Mater. 24, 90–101 (2008)

    CAS  PubMed  Google Scholar 

  46. F. Mingwen, Endodontics (People’s Health Publishing House, Shelton, 2012), p. 260

    Google Scholar 

  47. A.A. Azim et al., The Tennessee study: factors affecting treatment outcome and healing time following nonsurgical root canal treatment. Int. Endod. J. 49, 6–16 (2016)

    CAS  PubMed  Google Scholar 

  48. C. Sathorn et al., Effectiveness of single-versus multiple-visit endodontic treatment of teeth with apical periodontitis: a systematic review and meta-analysis. Int. Endod. J. 38, 347–355 (2005)

    CAS  PubMed  Google Scholar 

  49. D.R. Violich et al., The smear layer in endodontics: a review. Int. Endod. J. 43, 2–15 (2010)

    CAS  PubMed  Google Scholar 

  50. A. Stabholz et al., The use of layers for cleaning and disinfecting of the root canal system. Alpha Omegan 101, 195–201 (2008)

    PubMed  Google Scholar 

  51. P.N.R. Nair et al., Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after ‘one-visit’ endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 99, 231–252 (2005)

    CAS  PubMed  Google Scholar 

  52. U. Romeo et al., Effectiveness of KTP laser versus 980 nm diode laser to kill enterococcus faecalis in biofilms developed in experimentally infected root canals. Aust. Endod. J. 41, 17–23 (2015)

    PubMed  Google Scholar 

  53. D. Orstavik et al., Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod. Dent. Traumatol. 6, 142–149 (1990)

    CAS  PubMed  Google Scholar 

  54. R.E. Walton, Histologic evaluation of different methods of enlarging the pulp canal space. Aust. Endod. J. 2, 304–311 (1976)

    CAS  Google Scholar 

  55. S. Annie et al., Antibacterial nanoparticles endodontics: a narrative review. Int. Endod. J. 42(10), 1417–1426 (2016)

    Google Scholar 

  56. A. Sadr et al., The viscoelastic behavior of dental adhesives: a nanoindentation study. Dent. Mater. 25, 13–19 (2009)

    CAS  PubMed  Google Scholar 

  57. A. Jamleh et al., Nano-indentation testing of new and fractured nickel-titanium endodontic instruments. Int. Endod. J. 45, 462–468 (2012)

    CAS  PubMed  Google Scholar 

  58. F.W. Benenati et al., Obturation of the radicular space. Ingle’s Endodont, chapter 30, 1053–1087 (2008)

    Google Scholar 

  59. A.C. Câmara et al., In vitro antimicrobial activity of 0.5%, 1%, and 2.5% sodium hypochlorite in root canal instruments with the ProTaper Universal system. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 108, e55–e56 (2009)

    PubMed  Google Scholar 

  60. D. Orstavik et al., Dimensional change following setting of root canal sealer materials. Dent. Mater. 17, 512–519 (2001)

    CAS  PubMed  Google Scholar 

  61. D. Ricucci, Apical limit of root canal instrumentation and obturation. Int. Endod. J. 31, 384–393 (1998)

    CAS  PubMed  Google Scholar 

  62. J.F. Siqueira et al., Coronal leakage of two root canal sealers containing calcium hydroxide after exposure to human saliva. Int. Endod. J. 25, 14–16 (1999)

    Google Scholar 

  63. B.G. Tidmarsh, Preparation of the root canal. Int. Endod. J. 15, 53–61 (1982)

    CAS  PubMed  Google Scholar 

  64. R.S. Schwartz, Adhesive dentistry and endodontics. Part 2: bonding in the root canal system—the promise and the problems: a review. Int. Endod. J. 32, 1125–1134 (2006)

    Google Scholar 

  65. Peters, Two-year in vitro solubility evaluation of four Gutta-percha sealer obturation techniques. Int. Endod. J. 12, 139–145 (1986)

    CAS  Google Scholar 

  66. S. Desai et al., Calcium hydroxide-based root canal sealers: a review. Int. Endod. J. 35, 475–480 (2009)

    Google Scholar 

  67. R.B. Kazemi et al., Dimensional changes of endodontic sealers. Oral Surg. Oral Med. Oral Pathol. 76, 766–771 (1993)

    CAS  PubMed  Google Scholar 

  68. J.G. Cailleteau et al., Prevalence of teaching apical patency and various instrumentation and obturation techniques in United States Dental Schools. Int. Endod. J. 23, 394–396 (1997)

    CAS  Google Scholar 

  69. M.K. Wu et al., Fluid movement along the coronal two-thirds of root fillings placed by three different gutta-percha techniques. Int. Endod. J. 36, 533–540 (2003)

    PubMed  Google Scholar 

  70. L. Peng et al., Outcome of root canal obturation by warm gutta-percha versus cold lateral condensation: a meta-analysis. Int. Endod. J. 33, 106–109 (2007)

    Google Scholar 

  71. A.S. Kishen, Nanotechnology in endodontics current and potential clinical applications. Endodontology 28, 78 (2016)

    Google Scholar 

  72. F. Chen et al., Bismuth-doped injectable calcium phosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling. Acta Biomater. 6, 3199–3207 (2010)

    CAS  PubMed  Google Scholar 

  73. J.F. Siqueira, Microbial causes of endodontic flare-ups. Int. Endod. J. 36, 453–463 (2003)

    PubMed  Google Scholar 

  74. A. Gesi et al., Interfacial strength of resilon and gutta-percha to intraradicular dentin. Int. Endod. J. 31, 809–813 (2005)

    Google Scholar 

  75. R. Lam et al., Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008)

    CAS  PubMed  Google Scholar 

  76. R.P. Borges et al., Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int. Endod. J. 45, 419–428 (2011)

    PubMed  Google Scholar 

  77. N. Shokouhinejad et al., Pushout bond strength of resilon/epiphany self-etch and gutta-percha/AH26 after different irrigation protocols. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 110, e88–e92 (2010)

    PubMed  Google Scholar 

  78. N. Shokouhinejad et al., Penetration of epiphany, epiphany self-etch, and AH plus into dentinal tubules: a scanning electron microscopy study. Int. Endod. J. 37, 1316–1319 (2011)

    Google Scholar 

  79. M.A. Fisher et al., An in vitro comparison of bond strength of various obturation materials to root canal dentin using a push-out test design. Int. Endod. J. 33, 856–858 (2007)

    Google Scholar 

  80. H.M. Zhou et al., In vitro cytotoxicity of calcium silicate containing endodontic sealers. Int. Endod. J. 41, 56–61 (2015)

    CAS  Google Scholar 

  81. F.R. McMichen et al., A comparative study of selected physical properties of five root-canal sealers. Int. Endod. J. 36, 629–635 (2003)

    CAS  PubMed  Google Scholar 

  82. M.R. Leonardo et al., In vitro evaluation of antimicrobial activity of sealers and pastes used in endodontics. Int. Endod. J. 26, 391–394 (2000)

    CAS  Google Scholar 

  83. D. Cecchin et al., Effect of root canal sealers on bond strength of fiberglass posts cemented with self-adhesive resin cements. Int. Endod. J. 44, 314–320 (2011)

    CAS  PubMed  Google Scholar 

  84. M. Ceci et al., Biological and chemical-physical properties of root-end filling materials: a comparative study. Conserv. Dent. J. 18, 94–99 (2015)

    CAS  Google Scholar 

  85. M. Samiei et al., Antimicrobial efficacy of mineral trioxide aggregate with and without silver nanoparticles. Iran. Endod. J. 8, 166–170 (2013)

    PubMed  PubMed Central  Google Scholar 

  86. A.S. Jain et al., MTA: the new biocompatible material of choice for direct pulp capping in cariously exposed immature teeth with open apex: a case report. Indian Conserve Endod. J. 1, 24–27 (2016)

    Google Scholar 

  87. E.T. Koh et al., Mineral trioxide aggregate stimulates a biological response in human osteoblasts. Biomed. Mater. Res. J. 37, 432–439 (1997)

    CAS  Google Scholar 

  88. L.A.S. Dreger et al., Mineral trioxide aggregate and portland cement promote biomineralization in vivo. Int. Endod. J. 38, 324–349 (2012)

    Google Scholar 

  89. N. Ahmed et al., External cervical resorption case report and a brief review of literature. Nat. Sci. Biol. Med. J. 5, 210–214 (2014)

    Google Scholar 

  90. M. Bendyk-szeffer et al., Perforating internal root resorption repaired with mineral trioxide aggregate caused complete resolution of odontogenic sinus mucositis: a case report. Aust. Endod. J. 41, 274–278 (2015)

    Google Scholar 

  91. V. Aggarwal et al., Comparative evaluation of push-out bond strength of ProRoot MTA, Biodentine, and MTA Plus in furcation perforation repair. Conserve Dent. J. 16, 462–465 (2013)

    Google Scholar 

  92. E. Bonte et al., MTA versus Ca (OH)2 in apexification of non-vital immature permanent teeth: a randomized clinical trial comparison. Clin. Oral Invest. 19, 1381–1388 (2015)

    Google Scholar 

  93. P. Bansal et al., Effect of mineral trioxide aggregate as a direct pulp capping agent in cariously exposed permanent teeth. Saudi Endod. J. 4, 137–141 (2014)

    Google Scholar 

  94. C. Kruse et al., Periapical bone healing after apicectomy with and without retrograde root filling with mineral trioxide aggregate: a 6-year follow-up of a randomized controlled trial. Int. Endod. J. 42, 533–537 (2016)

    Google Scholar 

  95. A. Prasad et al., A comparative evaluation of the effect of various additives on selected physical properties of white mineral trioxide aggregate. Conserve Dent. J 18, 237–241 (2015)

    CAS  Google Scholar 

  96. M.L. Cohen, Nanotubes, nanoscience, and nanotechnology. Mater. Sci. Eng. C 15, 1–11 (2001)

    Google Scholar 

  97. J.P. Thomas et al., Nanotechnology and Biomaterials (Boca Raton, FL, CRC Taylor and Francis, 2006)

    Google Scholar 

  98. S.C. Abeylath et al., Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics. Expert Opin. Drug Deliv. 5, 931–949 (2008)

    CAS  PubMed  Google Scholar 

  99. S.T. Ozak et al., Nanotechnology and dentistry. Eur. Dent. J. 7, 145–151 (2013)

    Google Scholar 

  100. J. Venugopal et al., Nanotechnology for nanomedicine and delivery of drugs. Curr. Pharm. Des. 14, 2184–2200 (2008)

    CAS  PubMed  Google Scholar 

  101. B.L. Cushing et al., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)

    CAS  PubMed  Google Scholar 

  102. P.N. Nair, On the causes of persistent apical periodontitis: a review. Int. Endod. J. 39, 249–281 (2006)

    CAS  PubMed  Google Scholar 

  103. B.P. Gomes et al., Microbiological examination of infected dental root canals. Oral Microbiol. Immunol. 19, 71–76 (2004)

    CAS  PubMed  Google Scholar 

  104. J.W. Costerton et al., Biofilms, the customized microniche. Bacteriol. J. 176, 2137–2142 (1994)

    CAS  Google Scholar 

  105. P.J.L. Del et al., The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther. 82, 204–209 (2007)

    Google Scholar 

  106. S.A. Saunders, Current practicality of nanotechnology in dentistry. Invest. Dent. 1, 47–61 (2009)

    CAS  Google Scholar 

  107. M.A. Versiani et al., Zinc oxide nanoparticles enhance physicochemical characteristics of grossman sealer. Int. Endod. J. 42, 1804–1810 (2016)

    Google Scholar 

  108. K. Zoufan et al., Cytotoxicity evaluation of gutta flow and endo sequence BC sealers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 112, 657–661 (2011)

    PubMed  Google Scholar 

  109. L. Argueta-Figueroa et al., Mineral trioxide aggregate enriched with iron disulfide nanostructures: an evaluation of their physical and biological properties. Eur. Oral Sci. J. 126, 1–10 (2018)

    Google Scholar 

  110. J. Santos-cruz et al., Colloidal synthesis of biocompatible iron disulphide nanocrystals. Nanomed. Biotechnol. 1, 1–8 (2017)

    Google Scholar 

  111. S. Muliyar et al., Microleakage in endodontics. Int. Oral Health J. 6, 99–103 (2014)

    Google Scholar 

  112. M.A. Saghiri et al., Nanomodification of mineral trioxide aggregate for enhanced physiochemical properties. Int. Endod. J. 45, 979–988 (2012)

    CAS  PubMed  Google Scholar 

  113. M.S. Namazikhah et al., The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int. Endod. J. 41, 108–116 (2008)

    CAS  PubMed  Google Scholar 

  114. A. Mohammad et al., Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent. Trauma 29, 323–327 (2013)

    Google Scholar 

  115. K.D. Jandt et al., Future perspectives of resin-based dental materials. Dent. Mater. 25, 1001–1006 (2009)

    CAS  PubMed  Google Scholar 

  116. C. Silva et al., Biotransformations in synthetic fibres. Biocatal. Biotransformation 26, 350–356 (2008)

    CAS  Google Scholar 

  117. M. Tian et al., Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48, 2720–2728 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  118. M.F. Hamilton et al., Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J. Biomed. Mater. Res. Part B Appl. Biomater. 103(8), 1560–1568 (2014)

    PubMed  Google Scholar 

  119. L.M. Manus et al., Gd (III)-nano diamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  120. E.K. Chow et al., Nano-diamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011)

    PubMed  Google Scholar 

  121. A.H. Smith et al., Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 3, 2844–2848 (2011)

    CAS  PubMed  Google Scholar 

  122. E.K.H. Chow et al., Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5, 216rv4 (2013)

    PubMed  Google Scholar 

  123. L. Moore et al., Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 25, 3532–3541 (2013)

    CAS  PubMed  Google Scholar 

  124. T.B. Toh et al., Nano-diamond mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol. Pharm. 11, 2683–2691 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  125. H.J. Kim et al., Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8, 2998–3005 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  126. X. Wang et al., Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 8, 12151–12166 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  127. O. Faklaris et al., Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009)

    CAS  PubMed  Google Scholar 

  128. V.N. Mochalin et al., The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011)

    PubMed  Google Scholar 

  129. Y. Liang et al., A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009)

    CAS  PubMed  Google Scholar 

  130. A. Pentecost et al., Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010)

    CAS  PubMed  Google Scholar 

  131. D.K. Lee et al., Nanodiamond-gutta percha composite biomaterials for root canal therapy. ACS Nano 9, 11490–11501 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  132. J. Hrkach, Preclinical development and clinical translation of a PSMA targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4, 128–139 (2012)

    Google Scholar 

  133. M.E. Davis et al., Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Q. Zhang et al., Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)

    PubMed  Google Scholar 

  135. S. Mohammad et al., Nanoparticles for antimicrobial purposes in endodontics: A systematic review of in vitro studies. Mater. Sci. Eng. C 58, 1269–1278 (2015)

    Google Scholar 

  136. C. Wu et al., Bioactive mesoporous calcium–silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. Mater. Chem. J. 22, 16801–16809 (2012)

    CAS  Google Scholar 

  137. Z. Wang, Bioceramic materials in endodontics. Int. Endod. J. 32, 3–30 (2015)

    Google Scholar 

  138. S. Noushin et al., Push-out bond strength of gutta-percha with a new bioceramic sealer in the presence or absence of smear layer. Aust. Endod. J. 39, 102–106 (2013)

    Google Scholar 

  139. A. Al-Haddad et al., Interfacial adaptation and thickness of bioceramic-based root canal sealers. Dent. Mater. J. 34, 516–521 (2015)

    CAS  PubMed  Google Scholar 

  140. S. Ersahan et al., Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. Int. Endod. J. 36, 2000–2002 (2010)

    Google Scholar 

  141. L. Han et al., Bioactivity evaluation of three calcium silicate-based endodontic materials. Int. Endod. J. 46, 808–814 (2013)

    CAS  PubMed  Google Scholar 

  142. E.P. Guven et al., In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int. Endod. J. 46, 1173–1182 (2013)

    CAS  PubMed  Google Scholar 

  143. T. Du et al., Combined antibacterial effect of sodium hypochlorite and root canal sealers against enterococcus faecalis biofilms in dentin canals. Int. Endod. J. 41, 1294–1298 (2015)

    Google Scholar 

  144. H. Zhang et al., Antibacterial activity of endodontic sealers by modified direct contact test against enterococcus faecalis. Int. Endod. J. 35, 1051–1055 (2009)

    Google Scholar 

  145. S. Ersahan et al., Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol. Scand. 71, 857–862 (2013)

    CAS  PubMed  Google Scholar 

  146. W. Zhang et al., Assessment of a new root canal sealer’s apical sealing ability. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 107, e79–e82 (2009)

    PubMed  Google Scholar 

  147. H.M. Zhou et al., Physical properties of 5 root canal sealers. Int. Endod. J. 39, 1281–1286 (2013)

    Google Scholar 

  148. G.T. Candeiro et al., Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. Int. Endod. J. 38, 842–845 (2012)

    Google Scholar 

  149. A. Gartman et al., Comparison of pyrite (FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents. Geochim. Cosmochim. Acta 120, 447–458 (2013)

    CAS  Google Scholar 

  150. Y.H. Wang et al., In vitro study of dentinal tubule penetration and filling quality of bioceramic sealer. PLoS One 13, e0192248 (2018)

    PubMed  PubMed Central  Google Scholar 

  151. A. Kokkas et al., The influence of the smear layer on dentinal tubule penetration depth by three different root canal sealers: an in vitro study. Int. Endod. J. 30, 100–102 (2004)

    Google Scholar 

  152. I. Heling et al., The antimicrobial effect within dentinal tubules of four root canal sealers. Int. Endod. J. 22, 257–259 (1996)

    CAS  Google Scholar 

  153. J. Branstetter et al., The physical properties and sealing action of endodontic sealer cements: a review of the literature. Int. Endod. J. 8, 312–316 (1982)

    CAS  Google Scholar 

  154. G. De-Deus et al., Lack of correlation between sealer penetration into dentinal tubules and sealability in nonbonded root fillings. Int. Endod. J. 45, 642–651 (2012)

    CAS  PubMed  Google Scholar 

  155. L.P. Salles et al., Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture. Int. Endod. J. 38, 971–976 (2012)

    Google Scholar 

  156. C.V. Bin et al., Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. Int. Endod. J. 38, 495–500 (2012)

    Google Scholar 

  157. R.D. Morgental et al., Antibacterial activity of two MTA based root canal sealers. Int. Endod. J. 44, 1128–1133 (2011)

    CAS  PubMed  Google Scholar 

  158. D. Orstavik et al., Clinical performance of three endodontic sealers. Endod. Dent. Traumatol. 3, 178–186 (1987)

    CAS  PubMed  Google Scholar 

  159. M.A. Duarte et al., Influence of calcium hydroxide association on the physical properties of AH Plus. Int. Endod. J. 36, 1048–1051 (2010)

    Google Scholar 

  160. C.P. Mchugh et al., pH required to kill Enterococcus faecalis in vitro. Int. Endod. J. 30, 218–219 (2004)

    Google Scholar 

  161. C.H. Stuart et al., Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. Int. Endod. J. 32, 93–98 (2006)

    Google Scholar 

  162. T. Okabe et al., Effects of pH on mineralization ability of human dental pulp cells. Int. Endod. J. 32, 198–201 (2006)

    Google Scholar 

  163. C.J. Stock, Calcium hydroxide: root resorption and perio-endo lesions. Br. Dent. J. 158, 325–334 (1985)

    CAS  PubMed  Google Scholar 

  164. J. Maryam et al., In vitro cytotoxicity of a new nano root canal sealer on human gingival fibroblasts. Iran. Endod. J 12, 220–225 (2017)

    Google Scholar 

  165. J. Ma et al., Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14, 619 (2003)

    CAS  Google Scholar 

  166. R.A. McIntyre, Common nano-materials and their use in real world applications. Sci. Prog. 95, 1–22 (2012)

    CAS  PubMed  Google Scholar 

  167. P. Subhashree et al., Nanoparticles used in dentistry: a review. J. Oral Biol. Craniofac. Res. 8(1), 58–67 (2018)

    Google Scholar 

  168. I. Abramovitz et al., In vitro biocompatibility of endodontic sealers incorporating antibacterial nanoparticles. Nanomater. J., 2012, 1–9 (2012)

    Google Scholar 

  169. N. Beyth et al., Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials 29, 4157–4163 (2008)

    CAS  PubMed  Google Scholar 

  170. J. Wang et al., Physicochemical and biological properties of a novel injectable polyurethane system for root canal filling. Int. J. Nanomed. 10, 697–709 (2015)

    Google Scholar 

  171. G.P. Badole et al., A comparative evaluation of cytotoxicity of root canal sealers: an in vitro study. Restor. Dent. Endod. 38, 204–209 (2013)

    PubMed  PubMed Central  Google Scholar 

  172. A. Kaur et al., Biotoxicity of commonly used root canal sealers: a meta-analysis. Conserve Dent. J. 18, 83 (2015)

    CAS  Google Scholar 

  173. S. Imamura et al., Effect of filler type and polishing on the discoloration of composite resin artificial teeth. Dent. Mater. J. 27, 802–808 (2008)

    CAS  PubMed  Google Scholar 

  174. G. Zarb et al., Prosthodontic treatment for edentulous patients: complete dentures and implant-supported prostheses (Mosby, Maryland Heights, 2013), p. 135

    Google Scholar 

  175. K. Katja et al., Flexural fatigue of denture base polymer with fiber-reinforced composite reinforcement. Compos. Part A Appl. Sci. Manuf. 36, 1177–1324 (2005)

    Google Scholar 

  176. N. Murakami et al., Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin. Mech. Behav. Biomed. Mater. J. 20, 98–104 (2013)

    CAS  Google Scholar 

  177. A. Al-Haddad et al., Fracture toughness of heat cured denture base acrylic resin modified with chlorhexidine and fluconazole as bioactive compounds. Dent. J. 42, 180–184 (2014)

    CAS  Google Scholar 

  178. Y. Zhang et al., The antifungal effects and mechanical properties of silver bromide/cationic polymer nanocomposite-modified poly-methyl methacrylate-based dental resin. Sci. Rep. 7, 1547 (2017)

    PubMed  PubMed Central  Google Scholar 

  179. N.M. Ajaj-Alkordy et al., Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins. Saudi Dent. J. 26, 15–18 (2014)

    PubMed  Google Scholar 

  180. D.T. Castro et al., In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. Prosthet. Dent. J. 115, 238–246 (2016)

    Google Scholar 

  181. Z. Han et al., Effect of silver-supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites. Mater. Des. 65, 1245–1252 (2015)

    CAS  Google Scholar 

  182. P. Franklin et al., Reinforcement of poly (methyl methacrylate) denture base with glass flake. Dent. Mater. J. 21, 365–370 (2005)

    CAS  Google Scholar 

  183. E. Nagai et al., Repair of denture base resin using woven metal and glass fiber: effect of methylene chloride pretreatment. Prosthet. Dent. J. 85, 496–500 (2001)

    CAS  Google Scholar 

  184. U.R. Darbar et al., Denture fracture: a survey. Br. Dent. J. 176, 342–345 (1994)

    CAS  PubMed  Google Scholar 

  185. M. Eshed et al., MgF2 nanoparticle-coated teeth inhibit Streptococcus mutans biofilm formation on a tooth model. Mater. Chem. B J. 1, 3985–3991 (2013)

    CAS  Google Scholar 

  186. G.A. Silva, Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 61, 216–220 (2004)

    Google Scholar 

  187. A. Mnyusiwalla et al., Mind the gap: science and ethics in nanotechnology. Nanotechnology 14, R9–R13 (2003)

    Google Scholar 

  188. V. Asopa et al., A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi Dent. Res. J. 2, 146–151 (2015)

    Google Scholar 

  189. N.W. Elshereksi et al., Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites. Dent. J. 56, 121–132 (2017)

    CAS  Google Scholar 

  190. H.Z. Mahross et al., Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. Eur. Dent. J. 9, 207–212 (2015)

    Google Scholar 

  191. K.Y. Nam et al., Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology 29, 413–419 (2012)

    Google Scholar 

  192. M. Atai et al., Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent. Mater. J. 28, 133–145 (2012)

    CAS  Google Scholar 

  193. Q.Q. Wang et al., Surface modification of PMMA/O-MMT composite microfibers by TiO2 coating. Appl. Surf. Sci. 258, 98–102 (2011)

    CAS  Google Scholar 

  194. Y. Gao et al., Preparation of poly (methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization. Nanotechnology 19, 495604 (2008)

    PubMed  Google Scholar 

  195. J. Jordan et al., Experimental trends in polymer nano composites – a review. Mater. Sci. Eng. 393, 1–11 (2005)

    Google Scholar 

  196. M.A. Compagnoni et al., The effect of polymerization cycles on porosity of microwave-processed denture base resin. Prosthet. Dent. J. 91, 281–285 (2004)

    CAS  Google Scholar 

  197. I.N. Safi, Evaluation the effect of nano—fillers (TiO2, AL2O3, SiO2) addition on glass transition temperature, e-modulus and coefficient of thermal expansion of acrylic denture base material. Baghdad Coll. Dent. J. 26, 37–41 (2014)

    Google Scholar 

  198. M. Tian et al., Fabrication and evaluation of BIS-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent. Mater. J. 24, 235–243 (2008)

    CAS  Google Scholar 

  199. H.C.C. Van et al., Fiber reinforced dental composites in beam testing. Dent. Mater. J. 24, 1435–1443 (2008)

    Google Scholar 

  200. W. Sun et al., Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Dent. Mater. J. 26, 873–880 (2010)

    CAS  Google Scholar 

  201. S. Subramani et al., Crosslinked aqueous dispersion of silylated poly(urethane-urea)/clay nanocomposites. Compos. Sci. Technol. 67, 1561–1573 (2007)

    CAS  Google Scholar 

  202. G. Zappini et al., Comparison of fracture tests of denture base materials. Prosthet. Dent. J. 90, 578–585 (2003)

    CAS  Google Scholar 

  203. N.M. Ayad et al., Effect of reinforcement of high impact acrylic resin with micro-zirconia on some physical and mechanical properties. Rev. Clin. Pesq. Odontol. 4, 145–151 (2008)

    Google Scholar 

  204. F.J.N. Arioli et al., Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization. Appl. Oral Sci. J. 19, 249–253 (2011)

    Google Scholar 

  205. S. Suvarna et al., Residual monomer content of repair autopolymerizing resin after microwave postpolymerization treatment. Eur. J. Prosthodont. 2, 28–32 (2014)

    Google Scholar 

  206. A.I. Zissis et al., Repairs in complete dentures: results of a survey. Quint. Dent. Technol. 20, 149–155 (1997)

    Google Scholar 

  207. C. Bural et al., Flexural properties of repaired heat-polymerizing acrylic resin after wetting with monomer and acetone. Gerodontology 27, 217–223 (2010)

    PubMed  Google Scholar 

  208. G.L. Polyzois et al., Fracture force, deflection at fracture, and toughness of repaired denture resin subjected to microwave polymerization or reinforced with wire or glass fiber. Prosthodont. Dent. J. 86, 613–619 (2001)

    CAS  Google Scholar 

  209. I. Kostoulas et al., Fracture force, deflection, and toughness of acrylic denture repairs involving glass fiber reinforcement. Aust. Prosthodont. J. 17, 257–261 (2008)

    Google Scholar 

  210. N.S. Ihab et al., Evaluation the effect of modified nano-fillers addition on some properties of heat cured acrylic denture base material. Baghdad Coll. Dent. J. 23, 23–29 (2011)

    Google Scholar 

  211. N.V. Asar et al., Influence of various metal oxides on mechanical and physical properties of heat-cured polymethylmethacrylate denture base resins. Adv. Prosthodont. J. 5, 241–247 (2013)

    Google Scholar 

  212. A.O. Alhareb et al., Effect of Al2O3/ZrO2 reinforcement on the mechanical properties of PMMA denture base. Reinf. Plast. Compos. J. 30, 86–93 (2011)

    CAS  Google Scholar 

  213. S. Skukla et al., Phase stabilization in nanocrystalline zirconia. Rev. Adv. Mater. 5, 117–120 (2003)

    Google Scholar 

  214. M. Gad et al., The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int. Dent. J. 2016, 7094056 (2016)

    Google Scholar 

  215. M.A. Ahmed et al., Effect of zirconium oxide nano-fillers addition on the flexural strength fracture toughness, and hardness of heat-polymerized acrylic resin. World Nano Sci. Eng. J. 4, 50–57 (2014)

    CAS  Google Scholar 

  216. M.M. Gad et al., Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int. J. Nanomed. 11, 5633–5643 (2016)

    CAS  Google Scholar 

  217. M.M. Gad et al., PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 12, 3801–3812 (2017)

    CAS  Google Scholar 

  218. F. Haupert et al., Reinforcement of thermosetting polymers by the incorporation of micro- and nanoparticles. Polym. Compos. 5, 45–62 (2005)

    Google Scholar 

  219. A.O. Alhareb et al., Impact strength, fracture toughness and hardness improvement of PMMA denture base through addition of nitrile rubber/ceramic fillers. Saudi Dent. Res. J. 8, 26–34 (2017)

    Google Scholar 

  220. A.O. Alhareb et al., Poly (methyl methacrylate) denture base composites enhancement by various combinations of nitrile butadiene rubber/treated ceramic fillers. Thermoplast. Compos. Mater. J. 28, 1–22 (2015)

    Google Scholar 

  221. L. Cheng et al., Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater. J. 28, 561–572 (2012)

    CAS  Google Scholar 

  222. X. Zhang et al., Mechanical and thermal properties of denture PMMA reinforced with silanized aluminum borate whiskers. Dent. Mater. J. 31, 903–908 (2012)

    PubMed  Google Scholar 

  223. X.Y. Zhang et al., Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA. Dent. Mater. J. 33, 141–146 (2014)

    CAS  PubMed  Google Scholar 

  224. W.M. Johnston et al., Translucency parameter of colorants for maxillofacial prostheses. Aust. Intellect. Prop. J. 8, 79–86 (1995)

    CAS  Google Scholar 

  225. M.M. Gad et al., Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int. J. Nanomed. 13, 283–292 (2018)

    CAS  Google Scholar 

  226. H.K. Hameed et al., The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cure acrylic denture base material. Baghdad Coll. Dent. J. 27, 32–39 (2015)

    Google Scholar 

  227. A. Almaroof et al., Influence of a polymerizable eugenol derivative on the antibacterial activity and wettability of a resin composite for intracanal post cementation and core build-up restoration. Dent. Mater. J. 32, 929–939 (2016)

    CAS  Google Scholar 

  228. J.A. Skupien et al., Prevention and treatment of Candida colonization on denture liners: a systematic review. Prosthodont. Dent. J. 110, 356–362 (2013)

    CAS  Google Scholar 

  229. A. Falah-Tafti et al., A comparison of the efficacy of nystatin and fluconazole incorporated into tissue conditioner on the in vitro attachment and colonization of Candida albicans. Dent. Res. J. 7, 18–22 (2010)

    Google Scholar 

  230. C. Fan et al., Development of an antimicrobial resin—a pilot study. Dent. Mater. J. 27, 322–328 (2011)

    CAS  Google Scholar 

  231. K.Y. Nam, In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. Adv. Prosthodont. J. 3, 20–24 (2011)

    Google Scholar 

  232. G. Chladek et al., Antifungal activity of denture soft lining material modified by silver nanoparticles—a pilot study. Int. J. Mol. Sci. 12, 4735–4744 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  233. G. Chladek et al., Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int. J. Mol. Sci. 14, 563–574 (2013)

    CAS  Google Scholar 

  234. M.M. Gad et al., Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. Int. J. Nanomed. 12, 5409–5419 (2017)

    CAS  Google Scholar 

  235. S. Veeraapandian et al., Antibacterial and antioxidant activity of protein capped silver and gold nanoparticles synthesized with Escherichia coli. Biomed. Nanotechnol. J. 8, 140–148 (2012)

    CAS  Google Scholar 

  236. R.R. Chen et al., Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent. Mater. J. 36, 693–699 (2017)

    CAS  PubMed  Google Scholar 

  237. B.S. Buffet et al., Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds–a critical review. Int. J. Antimicrob. Agents 39, 381–389 (2010)

    Google Scholar 

  238. P. Gilbert et al., Cationic antiseptics: diversity of action under a common epithet. Appl. Microbiol. J. 99, 703–715 (2005)

    CAS  Google Scholar 

  239. C. Pesci-Bardon et al., In vitro new dialysis protocol to assay the antiseptic properties of a quaternary ammonium compound polymerized with denture acrylic resin. Lett. Appl. Microbiol. 39, 226–231 (2004)

    CAS  PubMed  Google Scholar 

  240. C. Pesci-Bardon et al., In vitro antiseptic properties of an ammonium compound combined with denture base acrylic resin. Gerodontology 23, 111–116 (2006)

    CAS  PubMed  Google Scholar 

  241. L. Caillier et al., Synthesis and antimicrobial properties of polymerizable quaternary ammoniums. Eur. J. Med. Chem. 44, 3201–3208 (2009)

    CAS  PubMed  Google Scholar 

  242. G. McDonnell et al., Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12, 147–179 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  243. M. Balkenhol et al., Provisional crown and fixed partial denture materials: mechanical properties and degree of conversion. Dent. Mater. J. 23, 1574–1583 (2007)

    CAS  Google Scholar 

  244. J.L. Ferracane, Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent. Mater. J. 1, 11–14 (1985)

    CAS  Google Scholar 

  245. S. Galdiero et al., Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  246. J.R. Morones et al., The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005)

    CAS  PubMed  Google Scholar 

  247. Q. Feng et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Biomed. Mater. Res. J. 52, 662–668 (2000)

    CAS  Google Scholar 

  248. J. Jain et al., Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharm. 6, 1388–1401 (2009)

    CAS  PubMed  Google Scholar 

  249. J.S. Kim et al., Antimicrobial effects of silver nanoparticles. NanoBiotechnology 3, 95–101 (2007)

    CAS  Google Scholar 

  250. W. Wang et al., Genetic engineering of mesenchymal stem cells by non-viral gene delivery. Clin. Hemorheol. Micro. 58, 19–48 (2014)

    Google Scholar 

  251. H. Boulaiz et al., Non-viral and viral vectors for gene therapy. Cell. Mol. Biol. 51, 3–22 (2005)

    CAS  PubMed  Google Scholar 

  252. T. Teklemariam et al., Inhibition of DNA methylation enhances HLA-G expression in human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 452, 753–759 (2014)

    CAS  PubMed  Google Scholar 

  253. M. Kamihira et al., Development of separation technique for stem cells. Adv. Biochem. Eng. Biotechnol. 106, 173–193 (2007)

    CAS  PubMed  Google Scholar 

  254. A.M. Thimios et al., Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine 7, 1743–1753 (2012)

    Google Scholar 

  255. W. Zhang et al., Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration. Adv. Mater. 29, 1703795 (2017)

    Google Scholar 

  256. X. Yang et al., Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng. Part A 14, 71–81 (2008)

    CAS  PubMed  Google Scholar 

  257. S.V. Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6, 715–734 (2010)

    CAS  PubMed  Google Scholar 

  258. M. Zhou et al., Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the Notch signaling pathway. Nanomedicine 14, 1227–1236 (2018)

    CAS  PubMed  Google Scholar 

  259. S. Shrestha et al., Temporal-controlled dexamethasone releasing chitosan nanoparticle system enhances odontogenic differentiation of stem cells from apical papilla. Int. Endod. J. 41, 1253–1258 (2015)

    Google Scholar 

  260. C. Niu et al., Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol. Med. Rep. 16, 4879–4886 (2017)

    CAS  PubMed  Google Scholar 

  261. C. Yi et al., Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4, 6439–6448 (2010)

    CAS  PubMed  Google Scholar 

  262. Y.D. Rakhmatia et al., Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 57, 3–14 (2013)

    PubMed  Google Scholar 

  263. A. Bachhuka et al., Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells. Nanoscale 9, 14248–14258 (2017)

    CAS  PubMed  Google Scholar 

  264. R.V. Goreham et al., Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Adv. 3, 10309–10317 (2013)

    CAS  Google Scholar 

  265. K. Vasilev et al., Early stages of growth of plasma polymer coatings deposited from nitrogen- and oxygen-containing monomers. Plasma Process. Polym. 7, 824–835 (2010)

    CAS  Google Scholar 

  266. S. Zeng et al., Preparation and characterization of nano-hydroxyapatite/poly (vinyl alcohol) composite membranes for guided bone regeneration. J. Biomed. Nanotechnol. 7, 549–557 (2011)

    CAS  PubMed  Google Scholar 

  267. Y. Zhu et al., Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano 11, 3690–3704 (2017)

    CAS  PubMed  Google Scholar 

  268. C.F. Adams et al., Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomedicine 9, 737–741 (2013)

    CAS  PubMed  Google Scholar 

  269. S.Y. Lee et al., Nanotopological-tailored calcium phosphate cements for the odontogenic stimulation of human dental pulp stem cells through integrin signaling. RSC Adv. 5, 63363–63371 (2015)

    CAS  Google Scholar 

  270. Y. Xia et al., Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine 14, 35–45 (2018)

    CAS  PubMed  Google Scholar 

  271. Q. Yu et al., Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci. Rep. 6, 26667 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  272. A. Samadikuchaksaraei et al., Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J. Biomed. Mater. Res. A 104, 2001–2010 (2016)

    CAS  PubMed  Google Scholar 

  273. W. Liu et al., Electrospun nanofibers for regenerative medicine. Adv. Health Mater. 1, 10–25 (2012)

    CAS  Google Scholar 

  274. L. Li et al., Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 37, 218–229 (2015)

    CAS  PubMed  Google Scholar 

  275. X. He et al., Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng. A 19, 508–518 (2013)

    CAS  Google Scholar 

  276. J. Kissa et al., Augmentation of keratinized gingiva around dental implants. J. Stomatol. Oral Maxillofac. Surg. 118, 156–160 (2017)

    CAS  PubMed  Google Scholar 

  277. P.F. Nocini et al., Bi-layered collagen nano-structured membrane prototype (collagen matrix 10826(®)) for oral soft tissue regeneration: an “in vitro” study. Clin. Oral Implants Res. 24, 612–617 (2013)

    PubMed  Google Scholar 

  278. M. Dorkhan et al., Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces. BMC Oral Health 21, 75 (2014)

    Google Scholar 

  279. Z. Huang et al., Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J. Bone Miner. Res. 23, 1995–2006 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  280. X. Li et al., Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system. Acta Biomater. 35, 57–67 (2016)

    CAS  PubMed  Google Scholar 

  281. S. Gronthos et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 97, 13625–13630 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  282. W. Sonoyama et al., Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1, e79 (2006)

    PubMed  PubMed Central  Google Scholar 

  283. Z. Zhang et al., A promising combo gene delivery system developed from (3-Aminopropyl) triethoxysilane-modified iron oxide nanoparticles and cationic polymers. J. Nanopart. Res. 15, 1–11 (2013)

    Google Scholar 

  284. X. Zeng et al., Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomed. 7, 3365–3378 (2012)

    CAS  Google Scholar 

  285. I. Levy et al., Bioactive magnetic near Infra-Red fluorescent core-shell iron oxide/human serum albumin nanoparticles for controlled release of growth factors for augmentation of human mesenchymal stem cell growth and differentiation. J. Nanobiotechnol. 13, 34 (2015)

    Google Scholar 

  286. R.P. Ellen et al., Longitudinal microbiological investigation of a hospitalized population of older adults with a high root surface caries risk. J. Dent. Res. 64, 1377–1381 (1985)

    CAS  PubMed  Google Scholar 

  287. W.F. Liljemark et al., Human oral microbial ecology and dental caries and periodontal diseases. Crit. Rev. Oral Biol. Med. 7, 180–198 (1996)

    CAS  PubMed  Google Scholar 

  288. S.S. Socransky et al., The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63, 322–331 (1992)

    CAS  PubMed  Google Scholar 

  289. N.E.A. Abou et al., Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int. J. Nanomedicine 10, 6371–6394 (2015)

    Google Scholar 

  290. Z. Lu et al., Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med. 24, 1465–1471 (2013)

    CAS  PubMed  Google Scholar 

  291. K. Chaloupka et al., Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580–588 (2010)

    CAS  PubMed  Google Scholar 

  292. D. Seth et al., Nature-inspired novel drug design paradigm using nanosilver: efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr. Microbiol. 62, 715–726 (2011)

    CAS  PubMed  Google Scholar 

  293. K.R. Raghupathi et al., Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011)

    CAS  PubMed  Google Scholar 

  294. Y.H. Leung et al., Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10, 1171–1183 (2014)

    CAS  PubMed  Google Scholar 

  295. W.S. Cheow et al., Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. J. Biomed. Nanotechnol. 6, 391–403 (2010)

    CAS  PubMed  Google Scholar 

  296. K. Forier et al., Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 190, 607–623 (2014)

    CAS  PubMed  Google Scholar 

  297. X. Li et al., The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions. Int. J. Nanomedicine 11, 2471–2480 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  298. C.J. Seneviratne et al., Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms. PLoS One 9, e103234 (2014)

    PubMed  PubMed Central  Google Scholar 

  299. X. Cai et al., Protective effects of baicalin on ligature-induced periodontitis in rats. J. Periodontal Res. 43, 14–21 (2008)

    CAS  PubMed  Google Scholar 

  300. W. Luo et al., Baicalin downregulates porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling. PLoS One 7, e51008 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  301. C. Song et al., Inhibition of quorum sensing activity by ethanol extract of scutellaria baicalensis Georgi. J. Plant Pathol. Microbiol. S7, 1 (2012)

    Google Scholar 

  302. E.J. Jang et al., Combination effects of baicalein with antibiotics against oral pathogens. Arch. Oral Biol. 59, 1233–1241 (2014)

    CAS  PubMed  Google Scholar 

  303. K.C. Leung et al., Synergistic antibacterial effects of nanoparticles encapsulated with scutellaria baicalensis and pure chlorhexidine on oral bacterial biofilms. Nanomaterials (Basel) 6(4), 61 (2016)

    Google Scholar 

  304. A. Besinis et al., Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology 8, 745–754 (2014)

    CAS  PubMed  Google Scholar 

  305. S. Imazato et al., Incorporation of bacterial inhibitor into resin composite. J. Dent. Res. 73, 1437–1443 (1994)

    CAS  PubMed  Google Scholar 

  306. N. Beyth et al., An in vitro quantitative antibacterial analysis of amalgam and composite resins. J. Dent. 35, 201–206 (2007)

    CAS  PubMed  Google Scholar 

  307. L. Cheng et al., Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J. Biomed. Mater. Res. B Appl. Biomater. 100, 1378–1386 (2012)

    PubMed  PubMed Central  Google Scholar 

  308. P.B. das Neves et al., Addition of silver nanoparticles to composite resin: effect on physical and bactericidal properties in vitro. Braz. Dent. J. 25, 141–145 (2014)

    PubMed  Google Scholar 

  309. S. Kasraei et al., Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on streptococcus mutans and lactobacillus. Restor. Dent. Endod. 39, 109–114 (2014)

    PubMed  PubMed Central  Google Scholar 

  310. M. Azarsina et al., The antibacterial properties of composite resin containing nanosilver against streptococcus mutans and lactobacillus. J. Contemp. Dent. Pract. 14, 1014–1018 (2013)

    PubMed  Google Scholar 

  311. M. Ai et al., Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent. Mater. J. 33, 12–22 (2017)

    CAS  Google Scholar 

  312. Y.J. Cheng et al., In situ formation of silver nanoparticles in photocross linking polymers. J. Biomed. Mater. Res. B Appl. Biomater. 97, 124–131 (2011)

    PubMed  Google Scholar 

  313. S. Imazato, Antibacterial properties of resin composites and dentin bonding systems. Dent. Mater. J. 19, 449–457 (2003)

    CAS  Google Scholar 

  314. J.M. Antonucci et al., Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent. Mater. 28, 219–228 (2012)

    CAS  PubMed  Google Scholar 

  315. F. Li et al., Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent. Mater. J. 29, 450–461 (2013)

    CAS  Google Scholar 

  316. L. Cheng et al., Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent. Mater. J. 29, 462–472 (2013)

    CAS  Google Scholar 

  317. L. Cheng et al., Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J. Dent. Res. 91, 598–604 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  318. S. Imazato et al., Incorporation of antibacterial monomer MDPB in dentin primer. J. Dent. Res. 76, 768–772 (1997)

    CAS  PubMed  Google Scholar 

  319. K. Zhang et al., Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J. Dent. 41, 464–474 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  320. K. Zhang et al., Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J. Biomed. Mater. Res. B Appl. Biomater. 101, 929–938 (2013)

    PubMed  Google Scholar 

  321. M.A. Melo et al., Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater. J. 29, 199–210 (2013)

    CAS  Google Scholar 

  322. A. Byström et al., Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand. J. Dent. Res. 89, 321–328 (1981)

    PubMed  Google Scholar 

  323. M. Lotfi et al., Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. African J. Biotechnol. 10, 6799–6803 (2011)

    CAS  Google Scholar 

  324. J. Almeida et al., Treatment of the Enterococcus faecalis root canal biofilm with nanoparticle suspensions and conventional irrigants. Arq. Odontol. Belo Horizonte 51, 32–38 (2015)

    Google Scholar 

  325. S.W.S. Larz et al., Rationale and efficacy of root canal medicaments and root filling materials with emphasis on treatment outcome. J. Endodont. Top. 2, 35–58 (2002)

    Google Scholar 

  326. D. Bo et al., Effect of nanosilver gel, chlorhexidine gluconate, and camphorated phenol on enterococcus faecalis biofilm. Int. Sch. Res. Notices 2014, 380278 (2014)

    PubMed  PubMed Central  Google Scholar 

  327. A. Abbaszadegan et al., Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment. Int. Endod. J. 48, 790–800 (2015)

    CAS  PubMed  Google Scholar 

  328. J. Kreth et al., The antimicrobial effect of silver ion impregnation into endodontic sealer against streptococcus mutans. Open Dent. J. 2, 18–23 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  329. O. Dianat, et al., Gutta-percha coated with nanosilver particles. Invention registered number: 56019 (2008)

    Google Scholar 

  330. Y. Shantiaee et al., Cytotoxicity comparison of nanosilver coated gutta-percha with Guttaflow and normal gutta-percha on L929 fibroblast with MTT assay. Beheshti Univ. Dent. J. 29, 62–68 (2011)

    Google Scholar 

  331. M. Torabinejad et al., Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root-end filling materials. Int. Endod. J. 21, 295–299 (1995)

    CAS  Google Scholar 

  332. N. Jonaidi-Jafari et al., The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). J. Clin. Exp. Dent. 8, e22–e26 (2016)

    PubMed  PubMed Central  Google Scholar 

  333. A. Bahador et al., In vitro evaluation of the antimicrobial activity of nanosilver-mineral trioxide aggregate against frequent anaerobic oral pathogens by a membrane-enclosed immersion test. Biom. J. 38, 77–83 (2015)

    Google Scholar 

  334. V. Zand et al., Tissue reaction and biocompatibility of implanted mineral trioxide aggregate with silver nanoparticles in a rat model. Iran. Endod. J. 11, 13–16 (2016)

    CAS  PubMed  Google Scholar 

  335. L. Bazvand et al., Antibacterial effect of triantibiotic mixture, chlorhexidine gel, and two natural materials propolis and aloe vera against enterococcus faecalis: an ex vivo study. Dent. Res. J. (Isfahan) 11, 469–474 (2014)

    Google Scholar 

  336. B. Sagsen et al., In vitro fracture resistance of endodontically treated roots filled with a bonded filling material or different types of posts. J. Endod. 39, 1435–1437 (2013)

    PubMed  Google Scholar 

  337. C. Poggio et al., Biological and antibacterial properties of a new silver fiber post: in vitro evaluation. J. Clin. Exp. Dent. 9, e387–e393 (2017)

    PubMed  PubMed Central  Google Scholar 

  338. K. Bulad et al., Colonization and penetration of denture soft lining materials by Candida albicans. Dent. Mater. 20, 167–175 (2004)

    CAS  PubMed  Google Scholar 

  339. H.F. Paranhos et al., Effect of three methods for cleaning dentures on biofilms formed in vitro on acrylic resin. J. Prosthodont. 18, 427–431 (2009)

    PubMed  Google Scholar 

  340. E. Budtz-Jłrgensen et al., Oral candidiasis in long-term hospital care: comparison of edentulous and dentate subjects. Oral Dis. 2, 285–290 (1996)

    PubMed  Google Scholar 

  341. R. Rowan et al., Analysis of the response of Candida albicans cells to silver(I). Med. Mycol. 48, 498–505 (2010)

    CAS  PubMed  Google Scholar 

  342. A.Z. Sadeghi et al., The effect of nanochitosans particles on Candida biofilm formation. Curr. Med. Mycol. 2, 28–33 (2016)

    Google Scholar 

  343. J.H. Lee et al., Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent. Mater. 34, e63–e72 (2018)

    CAS  PubMed  Google Scholar 

  344. K.Y. Nam, In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J. Adv. Prosthodont. 3, 20–24 (2011)

    PubMed  PubMed Central  Google Scholar 

  345. G. Greenstein et al., The role of controlled drug delivery for periodontitis. J. Periodontol. 71, 125–140 (2000)

    CAS  PubMed  Google Scholar 

  346. J. Staehelin et al., Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19, 1206–1213 (1985)

    CAS  PubMed  Google Scholar 

  347. S. Hayakumo et al., Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial. Clin. Oral Investig. 17, 379–388 (2013)

    PubMed  Google Scholar 

  348. J.M. Corrêa et al., Silver nanoparticles in dental biomaterials. Int. J. Biomater. 2015, 485275 (2015)

    PubMed  PubMed Central  Google Scholar 

  349. A. Chwalibog et al., Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomedicine 5, 1085–1094 (2010)

    PubMed  PubMed Central  Google Scholar 

  350. S. Mukherjee et al., Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 4, 316–335 (2014)

    PubMed  PubMed Central  Google Scholar 

  351. T.S.J. Kashi et al., Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion paring method. Int. J. Nanomedicine 7, 221–234 (2012)

    PubMed  PubMed Central  Google Scholar 

  352. K. Madhumathi et al., Regenerative potential and antibacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed. Mater. 9, 035002 (2014)

    CAS  PubMed  Google Scholar 

  353. A.H. Melcher, On the repair potential of periodontal tissues. J. Periodontol. 47, 256–260 (1976)

    CAS  PubMed  Google Scholar 

  354. I.A. Demolon et al., Effects of antibiotic treatment on clinical conditions and bacterial growth with guided tissue regeneration. J. Periodontol. 64, 609–616 (1993)

    CAS  PubMed  Google Scholar 

  355. E.E. Machtei et al., Guided tissue regeneration and anti-infective therapy in the treatment of class II furcation defects. J. Periodontol. 64, 968–973 (1993)

    CAS  PubMed  Google Scholar 

  356. D.W. Chen et al., Preclinical experiments on the release behavior of biodegradable nanofibrous multipharmaceutical membranes in a model of four-wall intrabony defect. Antimicrob. Agents Chemother. 57, 9–14 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  357. J. Xue et al., Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 35, 9395–9405 (2014)

    CAS  PubMed  Google Scholar 

  358. S. Rani et al., Evaluation of the antibacterial effect of silver nanoparticles on guided tissue regeneration membrane colonization—an in vitro study. J. Int. Acad. Periodontol. 17, 66–76 (2015)

    PubMed  Google Scholar 

  359. M. Yazdimamaghani et al., Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J. Biomed. Nanotechnol. 10, 911–931 (2014)

    CAS  PubMed  Google Scholar 

  360. M. Ul-Islam et al., Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr. Polym. 89, 1189–1197 (2012)

    CAS  PubMed  Google Scholar 

  361. S. Khan et al., Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism and biocompatibility. Cellulose 22, 565–579 (2015)

    CAS  Google Scholar 

  362. C.R. Arciola et al., Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of enterococcus faecalis from orthopedic implant infections. Biomaterials 29, 580–586 (2008)

    CAS  PubMed  Google Scholar 

  363. L. Zhao et al., Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32, 5706–5716 (2011)

    CAS  PubMed  Google Scholar 

  364. M.A. Massa et al., Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 45, 146–153 (2014)

    CAS  PubMed  Google Scholar 

  365. C.Y. Flores et al., Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. J. Colloid Interface Sci. 350, 402–408 (2010)

    CAS  PubMed  Google Scholar 

  366. H. Qin et al., Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel. ACS Appl. Mater. Interfaces 7, 10785–10794 (2015)

    CAS  PubMed  Google Scholar 

  367. N. Kose et al., Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: in vivo study. Injury 47, 320–324 (2016)

    PubMed  Google Scholar 

  368. K. Memarzadeh et al., Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J. Biomed. Mater. Res. A 103, 981–989 (2015)

    PubMed  Google Scholar 

  369. W. Li et al., Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application. J. Mater. Sci. Mater. Med. 25, 1435–1448 (2014)

    CAS  PubMed  Google Scholar 

  370. A. Peetsch et al., Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf. B Biointerfaces 102, 724–729 (2013)

    CAS  PubMed  Google Scholar 

  371. H. Cao et al., Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32, 693–705 (2011)

    CAS  PubMed  Google Scholar 

  372. A. Besinis et al., Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 9, 2255–2289 (2015)

    CAS  PubMed  Google Scholar 

  373. A.S. Barnard, Nanohazards: knowledge is our first defense. Nat. Mater. 5, 245–248 (2006)

    CAS  PubMed  Google Scholar 

  374. L. Tijana et al., Nanotechnology in dentistry—current state and future perspectives. Serb. Dent. J. 59, 44–50 (2012)

    Google Scholar 

  375. Y.N. Zhang et al., Nanoparticle liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016)

    CAS  PubMed  Google Scholar 

  376. K.I. McConnell et al., Reduced cationic nanoparticle cytotoxicity based on serum masking of surface potential. J. Biomed. Nanotechnol. 12, 154–164 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  377. W.N. Missaoui et al., Toxicological status of nanoparticles: what we know and what we don’t know. Chem. Biol. Interact. 295, 1–12 (2018)

    CAS  PubMed  Google Scholar 

  378. P. Khanna et al., Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel) 5, 1163–1180 (2015)

    CAS  Google Scholar 

  379. S. Hackenberg et al., Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 201, 27–33 (2011)

    CAS  PubMed  Google Scholar 

  380. Y. Huang et al., Toxicity of silver nanoparticles to human dermal fibroblasts on microRNA level. J. Biomed. Nanotechnol. 10, 3304–3317 (2014)

    CAS  PubMed  Google Scholar 

  381. K.S. Tweden et al., Biocompatibility of silver-modified polyester for antimicrobial protection of prosthetic valves. J. Heart Valve Dis. 6, 553–561 (1997)

    CAS  PubMed  Google Scholar 

  382. M.V. Park et al., The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32, 9810–9817 (2011)

    CAS  PubMed  Google Scholar 

  383. J.S. Teodoro et al., Low-dose, subchronic exposure to silver nanoparticles causes mitochondrial alterations in Sprague-Dawley rats. Nanomedicine (Lond.) 11, 1359–1375 (2016)

    CAS  Google Scholar 

  384. S. Haider et al., Human tumor necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta 30, 111–123 (2009)

    CAS  PubMed  Google Scholar 

  385. C. Moon et al., Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. J. Toxicol. Environ. Health A 73, 396–409 (2010)

    CAS  PubMed  Google Scholar 

  386. D. Couto et al., Polyacrylic acid-coated and non-coated iron oxide nanoparticles induce cytokine activation in human blood cells through TAK1, p38 MAPK and JNK pro-inflammatory pathways. Arch. Toxicol. 89, 1759–1769 (2015)

    CAS  PubMed  Google Scholar 

  387. M.G.M. Berges, Exposure during production and handling of manufactured nanomaterials. Nanomaterials, 25–31 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Z., Han, L., Guo, Y., Jia, L., Yin, C., Xia, Y. (2020). Nanotechnology in Dental Therapy and Oral Tissue Regeneration. In: Xu, H., Gu, N. (eds) Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5386-8_3

Download citation

Publish with us

Policies and ethics