Skip to main content

Antioxidants and Reactive Oxygen Species (ROS) Scavenging Enzymes

  • Chapter
  • First Online:
Research Methods of Environmental Physiology in Aquatic Sciences

Abstract

Photosynthetic alga, like higher plants, generate reactive oxygen species (ROS), such as superoxide anion radicals (O2), hydroxyl radicals (·OH) and hydrogen peroxide (H2O2). Normally, the generation and detoxification of ROS in the cell are kept in equilibrium, but the production of ROS could be enhanced by biotic and abiotic stress, in which case algae need mechanisms to protective themselves from oxidative stress. The algal defence system against reactive oxygen involves reactive oxygen scavenging enzymes, including superoxide dismutase (SOD, EC1.15.1.1), catalase (CAT, EC1.11.1.6), peroxidase (POD, EC1.11.1.7), ascorbate peroxidase (APX, EC.1.11.1.11) and glutathione reductase (GR, EC1.6.4.2), and antioxidants such as ascorbate, glutathione, carotenoids, vitamin E, and proline. Here methods are described to determine the SOD, CAT, POD, APX, and GR activities using the marine macroalga Ulva prolifera as experimental material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MN, Bristi NJ, Rafiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21:143–152

    Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Bowler C, Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Google Scholar 

  • Capma A (1991) Biological roles of plant peroxidases: known and potential function. In: Everse J, Everse K, Grisham MB (eds) Peroxidases in chemistry and biology, CRC Press, vol ii. Boca Raton, FL, FL, pp 25–50

    Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  • Gaspar TH, Penel C, Hagega D, Greppin H (1991) Peroxidases in plant growth, differentiation and development processes. In: Lobarzewski J, Greppin H, Penel C, Gaspar TH (eds) Biochemical, molecular and physiological aspects of plant peroxidases. University de Geneve, Geneve, pp 249–280

    Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Mishra NP, Mishra RK, Singhal GS (1993) Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visable light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol 102:903–910

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Nakano N, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  Google Scholar 

  • Sharma P, Jha BA, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengling Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Ma, Z. (2021). Antioxidants and Reactive Oxygen Species (ROS) Scavenging Enzymes. In: Gao, K., Hutchins, D.A., Beardall, J. (eds) Research Methods of Environmental Physiology in Aquatic Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-5354-7_10

Download citation

Publish with us

Policies and ethics