Skip to main content

Reversible Myocardial Ischemia

  • Chapter
  • First Online:
Cardiac CT
  • 1065 Accesses


Reversible myocardial ischemia is a common disease that occurs in patients with atherosclerosis of coronary artery, myocardial microcirculation disturbance, and other infrequent etiologies. It is mainly due to the blood perfusion insufficiency of the myocardium. Ischemia is the single most important predictor of future hard cardiac events and ischemia correction remains the cornerstone of current revascularization strategies (Kennedy MW, Fabris E, Suryapranata H, Kedhi E, Cardiovasc Diabetol 16:51, 2017). Early accurate diagnosis of reversible myocardial ischemia is of great importance for reducing the incidence of myocardial infarction and improving the prognosis of patients. The electrocardiogram (ECG), functional testing, cardiac stress test (including exercise stress test and pharmacological stress test), and myocardial perfusion imaging were all the methods of choice for detecting myocardial ischemia. Among all these methods, the myocardial perfusion imaging approaches, which traditionally consist of radionuclide myocardial perfusion and magnetic resonance (MR) myocardial perfusion, have been considered as effective and accurate. Recently, with the rapid development of CT imaging techniques, CT myocardial perfusion imaging has been demonstrated as a promising noninvasive diagnostic strategy for myocardial ischemia. Up to now, the invasive fractional flow reserve (FFR) has been regarded as the “gold standard” for diagnosing hemodynamically significant coronary artery disease (CAD). In this chapter, based on a case of reversible myocardial ischemia, we will discuss the cardiac CT imaging manifestations of myocardial ischemia, and further possibly promising role of new cardiac CT technology, particularly the CT myocardial perfusion, in reversible myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Yi Y, Jin ZY, Wang YN. Advances in myocardial CT perfusion imaging technology. Am J Transl Res. 2016;8(11):4523–31.

    PubMed  PubMed Central  Google Scholar 

  2. Bucher AM, De Cecco CN, Schoepf UJ, Wang R, Meinel FG, Binukrishnan SR, et al. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis. Br J Radiol. 2014;87(1043):20140159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagao M, Matsuoka H, Kawakami H, Higashino H, Mochizuki T, Ohshita A, et al. Detection of myocardial ischemia using 64-slice MDCT. Circ J. 2009;73(5):905–11.

    Article  PubMed  Google Scholar 

  4. Gupta M, Kadakia J, Jug B, Mao SS, Budoff MJ. Detection and quantification of myocardial perfusion defects by resting single-phase 64-slice cardiac computed tomography angiography compared with SPECT myocardial perfusion imaging. Coron Artery Dis. 2013;24(4):290–7.

    Article  PubMed  Google Scholar 

  5. Nikolaou K, Sanz J, Poon M, Wintersperger BJ, Ohnesorge B, Rius T, et al. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol. 2005;15(5):864–71.

    Article  PubMed  Google Scholar 

  6. Iwasaki K, Matsumoto T. Myocardial perfusion defect in patients with coronary artery disease demonstrated by 64-multidetector computed tomography at rest. Clin Cardiol. 2011;34(7):454–60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kachenoura N, Lodato JA, Gaspar T, Bardo DM, Newby B, Gips S, et al. Value of multidetector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: comparison with nuclear perfusion imaging. Eur Radiol. 2009;19(8):1897–905.

    Article  PubMed  Google Scholar 

  8. Scheske JA, O'Brien JM, Earls JP, Min JK, LaBounty TM, Cury RC, et al. Coronary artery imaging with single-source rapid kilovolt peak-switching dual-energy CT. Radiology. 2013;268(3):702–9.

    Article  PubMed  Google Scholar 

  9. Danad I, Cho I, Elmore K, Schulman-Marcus J, Óhartaigh B, Stuijfzand WJ, et al. Comparative diagnostic accuracy of dual-energy CT myocardial perfusion imaging by monochromatic energy versus material decomposition methods. Clin Imaging. 2018;50:1–4.

    Article  PubMed  Google Scholar 

  10. Lu M, Wang S, Sirajuddin A, Arai AE, Zhao S. Dynamic stress computed tomography myocardial perfusion for detecting myocardial ischemia: a systematic review and meta-analysis. Int J Cardiol. 2018;258:325–31.

    Article  PubMed  Google Scholar 

  11. Takx RAP, Celeng C, Schoepf UJ. CT myocardial perfusion imaging: ready for prime time? Eur Radiol. 2018;28(3):1253–6.

    Article  PubMed  Google Scholar 

  12. Yi Y, Wu W, Lin L, Zhang HZ, Qian H, Shen ZJ, et al. Single-phase coronary artery CT angiography extracted from stress dynamic myocardial CT perfusion on third-generation dual-source CT: validation by coronary angiography. Int J Cardiol. 2018;269:343–9.

    Article  PubMed  Google Scholar 

  13. Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, Norgaard BL, et al. Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging. 2015;8(10):1209–22.

    Article  PubMed  Google Scholar 

  14. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM, et al. Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology. 2018;288(1):64–72.

    Article  PubMed  Google Scholar 

  15. Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, et al. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging. 2017;10(7):760–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zheng-yu Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yi, Y., Wang, Y., Jin, Zy. (2020). Reversible Myocardial Ischemia. In: Jin, Zy., Lu, B., Wang, Y. (eds) Cardiac CT. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5304-2

  • Online ISBN: 978-981-15-5305-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics