Skip to main content

Multivariate Time Series Analysis Using Recurrent Neural Network to Predict Bike-Sharing Demand

  • Conference paper
  • First Online:
Smart Transportation Systems 2020

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 185))

Abstract

The bike-sharing service system is a service that allows a customer to rent a bike from a bike-sharing station and then return it to another bike-sharing station in a short time after they reach their destination. Thus, the impact of the bike distribution system based on the frequency of bike usage needs to be assessed. The bike-sharing system operator needs to predict the demand to accurately know how many bikes are needed in every station so as to assist the planner in the management process of the bike-sharing stations. This paper proposes an efficient and accurate model for predicting the bike-sharing service usage using various features of a machine learning algorithm. We compared the exiting techniques for the sequential data predicting of artificial intelligence for time series data and analysis. Then, we considered the use of the multivariate model with a recurrent neural network (RNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU). In addition, we considered combining the LSTM and GRU methods together to improve the model’s effectiveness and accuracy. The results showed that all the RNNs, including the LSTM, GRU, and the model combining the LSTM and GRU, are able to achieve high performance using the mean square mean absolute, mean squared error, and root mean square error. However, the mixed LSTM–GRU model accurately predicted the demand in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaheen, S.A., Guzman, S., Zhang, H.: Bike-sharing in Europe, the Americas, and Asia: past, present, and future. Transp. Res. Rec. 2143(1), 159–167 (2010)

    Article  Google Scholar 

  2. Ghosh, S., Varakantham, P., Adulyasak, Y., Jaillet, P.: Dynamic repositioning to reduce lost demand in bike sharing systems. J. Artif. Intell. Res. 58, 387–430 (2017)

    Article  Google Scholar 

  3. Singhvi, D., Singhvi, S., Frazier, P.I., Henderson, S.G., O’mahony, E., Shmoys, D.B., Woodard, D.B.: Predicting bike usage for New York city’s bike sharing system. In: Dilkina, B., Ernon, S., Hutchinson, R.A., Sheldon, D. (eds.) AAAI Workshop: Computational Sustainability. AAAI Press (2015)

    Google Scholar 

  4. Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., Moscibroda, T.: Mobility modeling and prediction in bike-sharing systems. In: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 165–178. Association for Computing Machinery, Singapore (2016)

    Google Scholar 

  5. Pana, Y., Zhenga, R.C., Zhanga, J., Yaob, X.: Predicting bike sharing demand using recurrent neural networks. Procedia Comput. Sci. 147, 562–566 (2019)

    Article  Google Scholar 

  6. Ashqar, H.I., Elhenawy, M., Almannaa, M.H., Ghamem, A., Rakha, H.A., House, L.: Modeling bike availability in a bike-sharing system using machine learning. In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 374–378. IEEE, Italy (2017)

    Google Scholar 

  7. Bike-sharing demand. http://www.capitalbikeshare.com/system-data. Last accessed 20 Nov 2019

  8. Bishop, C.M.: Neural networks for pattern recognition, 1st edn. Oxford University Press, Oxford, USA (1996)

    Google Scholar 

  9. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. CoRR arXiv:1409.2329 (2014)

  10. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kolen, J.F., Kremer, S. (eds.) A Field Guide to Dynamical Recurrent Networks, pp. 237–243. IEEE Press (2001)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Cho, K., Merrienboer, B.V., Gulechre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Doha, Qatar (2014)

    Google Scholar 

  13. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: INTERSPEECH 2014, 15th Annual Conference of the International Speech Communication Association, pp. 338–342. ISCA, Singapore (2014)

    Google Scholar 

  14. Olah, C.: Understanding LSTM Networks. http://colah.github.io/posts/2015-08-Understanding-LSTMs. Last accessed 20 Nov 2019

  15. Jiang, C., Chen, S., Bo, Y., Wang, Y., Sun, Z.: Performance improvement of GPS/SINS ultra-tightly integrated navigation system utilizing a robust cubature Kalman filter. J. Aeronaut. Astronaut. Aviat. 49(1), 49–55 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanokporn Boonjubut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boonjubut, K., Hasegawa, H. (2020). Multivariate Time Series Analysis Using Recurrent Neural Network to Predict Bike-Sharing Demand. In: Qu, X., Zhen, L., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2020. Smart Innovation, Systems and Technologies, vol 185. Springer, Singapore. https://doi.org/10.1007/978-981-15-5270-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5270-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5269-4

  • Online ISBN: 978-981-15-5270-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics