Skip to main content

Existing and Future Investigation of Charging Technology for Electric Bus

  • Conference paper
  • First Online:
Smart Transportation Systems 2020

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 185))

  • 630 Accesses

Abstract

Bus fleet electrification achieves momentum and inspiration within public transport aiming at further improving the mobility sustainability. In many countries, such as Sweden, China, and the USA, there are several ongoing demonstration projects of electric buses and many research projects. The charging technology development and implication is key for the expansion of electric buses and to foster it. An investigation of characteristics and benefits of various existing and future charging technologies has been created in this paper. The main types of charging infrastructure are depot charging, station charging, and inductive charging. The choice of different types is highly related to infrastructure construction, investment, and daily operation. The detailed illustration and analysis of them can provide a solid foundation to the near-future large-scale electric buses’ operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang, X., Zhang, S., Wu, Y., Xing, J., He, X., Zhang, K., Hao, J.: Air quality and health benefits from fleet electrification in China. Nature Sustain. 2, 962–971 (2019)

    Article  Google Scholar 

  2. Xylia, M., Leduc, S., Patrizio, P., Kraxner, F., Silveira, S.: Locating charging infrastructure for electric buses in Stockholm. Transp. Res. Part C Emerg. Technol. 78, 183–200 (2017)

    Google Scholar 

  3. Ebusco Homepage. https://www.ebusco.com/charging

  4. Marongiu, A., Roscher, M., Sauer, D.U.: Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles. Appl. Energy 137, 899–912 (2015)

    Article  Google Scholar 

  5. Schoch, J., Gaerttner, J., Schuller, A., Setzer, T.: Enhancing electric vehicle sustainability through battery life optimal charging. Transp. Res. Part B Methodol. 112, 1–18 (2018)

    Article  Google Scholar 

  6. Perez, H.E., Hu, X., Dey, S., Moura, S.J.: Optimal charging of Li-Ion batteries with coupled electro-thermal-aging dynamics. IEEE Trans. Veh. Technol. 66, 7761–7770 (2017)

    Article  Google Scholar 

  7. Su, W., Chow, M.-Y.: Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck. Appl. Energy 96, 171–182 (2012)

    Article  Google Scholar 

  8. Sundstrom, O., Binding, C.: Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Trans. Smart Grid. 3, 26–37 (2012)

    Article  Google Scholar 

  9. Alonso, M., Amaris, H., Germain, J., Galan, J.: Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms. Energies 7, 2449–2475 (2014)

    Article  Google Scholar 

  10. IEC 61851-An. In: International Standard for Electric Vehicle Conductive Charging Systems. (2018)

    Google Scholar 

  11. Houbbadi, A., Trigui, R., Pelissier, S., Redondo-Iglesias, E., Bouton, T.: Optimal scheduling to manage an electric bus fleet overnight charging. Energies 12, 2727 (2019)

    Article  Google Scholar 

  12. Rogge, M., Wollny, S., Sauer, D.: Fast charging battery buses for the electrification of Urban public transport—a feasibility study focusing on charging infrastructure and energy storage requirements. Energies 8, 4587–4606 (2015)

    Article  Google Scholar 

  13. Liu, Z., Yan, Y., Qu, X., Zhang, Y.: Bus stop-skipping scheme with random travel time. Transp. Res. Part C 35, 46–56 (2013)

    Article  Google Scholar 

  14. Lee, J., Lee, B.J., Park, G. L., and Kim, Y. C. Web service-based tour-and-charging scheduler framework for rent-a-car systems employing electric vehicles, Int. J. Control Autom., 6(4), (2013)

    Google Scholar 

  15. Lan, T., Hu. J., Kang, Q., Si, C., Wang, L., Wu, Q.: Optimal control of an electric vehicles charging schedule under electricity markets, Neural Comput. Appl., 23, 7–8 (2013)

    Google Scholar 

  16. Aabrandt, A., Andersen, P., Pedersen, A., You, S., Poulsen B., O’Connell, N., Ostergaard, J.: Prediction and optimization methods for electric vehicle charging schedules in the edison project. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) (2012)

    Google Scholar 

  17. He, Y., Venkatesh, B., Guan L.: Optimal scheduling for charging and discharging of electric vehicles, IEEE Trans. Smart GRID, 3(3) (2012)

    Google Scholar 

  18. Wang, S., Qu, X.: Station choice for Australian commuter rail lines: equilibrium and optimal fare design. Eur. J. Oper. Res. 258(1), 144–154 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kezunovic, M., Waller, S.T. and Damnjanovic, I.: Framework for studying emerging policy issues associated with phevs in managing coupled power and transportation systems. In: 2010 IEEE Green Technologies Conference, pp. 1–8 (2010)

    Google Scholar 

  20. Galus, M.D., Andersson, G.: Demand management of grid connected plug-in hybrid electric vehicles (PHEV). In 2008 IEEE energy 2030 conference pp. 1–8 (2008)

    Google Scholar 

  21. Lindgren, L.: Full electrification of Lund city bus traffic—a simulation study. Lund University, Lund, Sweden (2015)

    Google Scholar 

  22. Kunith, A., Mendelevitch, R., Goehlich, D.: Electrification of a city bus network–an optimization model for cost-effective placing of charging infrastructure and battery sizing of fast charging electric bus systems. Int. J. Sustain. Transp. 11, 707–720 (2017)

    Article  Google Scholar 

  23. Wang, S., Zhang, W., Qu, X.: Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations. Transp. Res. Part B 118, 318–335 (2018)

    Article  Google Scholar 

  24. Meng, Q., Qu, X.: Bus dwell time estimation at a bus bay: A probabilistic approach. Transp. Res. Part C, 36, 61–71 (2013)

    Google Scholar 

  25. Emre, M., Vermaat, P., Naberezhnykh, D., Damausuis, Y., Theodoropoulos, T., Cirimele, V., Doni, A.: Review of existing power transfer solutions, FABRIC (2014)

    Google Scholar 

  26. Choi, S.Y., Gu, B.W., Jeong, S.Y., Rim, C.T.: Advances in wireless power transfer systems for roadway powered electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 18–36 (2015)

    Article  Google Scholar 

  27. Onar, O.C., Miller, J.M., Campbell, S.L., Coomer, C., White, C.P., Seiber, L.E.: A novel wireless power transfer system for in-motion EV/PHEV charging. In: Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Mar 17–21, Long Beach (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziling Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, Z., Cao, D., Qu, X. (2020). Existing and Future Investigation of Charging Technology for Electric Bus. In: Qu, X., Zhen, L., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2020. Smart Innovation, Systems and Technologies, vol 185. Springer, Singapore. https://doi.org/10.1007/978-981-15-5270-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5270-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5269-4

  • Online ISBN: 978-981-15-5270-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics