Skip to main content

Realistic 5.9 GHz DSRC Vehicle-to-Vehicle Wireless Communication Protocols for Cooperative Collision Warning in Underground Mining

  • Conference paper
  • First Online:
Smart Transportation Systems 2020

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 185))

Abstract

Industrial vehicle automation is a core component of the building Industry 4.0. The uses of self-driving vehicles, inspection robots, and vehicular ad hoc networks (VANETs) communications in the mining industry are expected to open significant opportunities for collecting and exchanging data, localization, collision warning, and up-to-date traffic to enhance both the safety of workers and increase the productivity. In this paper, we present a review of the large-scale fading channel at 5.9 GHz in confined areas. Then, the requirements for DSRC receiver performance for VANET applications in an underground mine is calculated. This paper also reports the overall performance evaluation of three existing routing protocols, namely, emergency message dissemination for vehicular environments (EMDV), enhanced multi-hop vehicular broadcast (MHVB), and efficient directional broadcast (EDB) for active safety applications. Finally, a comparative study of these three routing protocols for cooperative collision warning in underground mining galleries was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhoi, S.K., Khilar, P.M.: Vehicular Communication—a survey. IET Netw. 3(3), 204–217 (2014)

    Article  Google Scholar 

  2. Alotaibi, M.M., Mouftah, H.T.: Relay selection for heterogeneous transmission powers in VANETs. IEEE Access 5, 4870–4886 (2017)

    Article  Google Scholar 

  3. MacHardy, Z., Khan, A., Obana, K., Iwashina, S.: V2X access technologies: regulation research and remaining challenges. IEEE Commun. Sur. Tut. 20(3), 1858–1877 (2018)

    Article  Google Scholar 

  4. Gokulakrishnan, P., Ganeshkumar. P: Road accident prevention with instant emergency warning message dissemination in vehicular ad-hoc network. PloS One 10(5) (2015)

    Google Scholar 

  5. Yu, M.Y., Song, J., Zheng, K, Guo, Y: A beacon transmission power control algorithm based on wireless channel load forecasting in VANETs. PloS One 10(11) (2015)

    Google Scholar 

  6. van Nunen, E., Kwakkernaat, R., Ploeg, J., Netten, B.D.: Cooperative competition for future mobility. Intell. Transp. Syst. IEEE Trans. 13(3), 1018–1025 (2012)

    Article  Google Scholar 

  7. Tang, T.-Q., et al.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)

    Article  Google Scholar 

  8. Kesting, M., Treiber, D., Helbing, D.: Connectivity statistics of store-and-forward intervehicle communication. Intell. Transp. Syst. IEEE Trans. 11(1), 72–81 (2010)

    Article  Google Scholar 

  9. Duff, E.S., Roberts, J.M., Corke, P.I: Automation of an underground mining vehicle using reactive navigation and opportunistic localization. In: Australasian Conference on Robotics and Automation, pp. 151–156. Auckland (2002)

    Google Scholar 

  10. Dragt, B.J: Modeling and control of an autonomous underground vehicle. University of Pretoria (2006)

    Google Scholar 

  11. Chehri, A., Fortier, P., Tardif, P.-M.: Security monitoring using wireless sensor networks. In: IEEE Communication Networks and Services Research, CNSR’07, pp. 13–17 (2007)

    Google Scholar 

  12. Chehri, A., Fortier, P., Tardif, P.M.: An investigation of UWB-based wireless networks in industrial automation. Int. J. Comput. Sci. Netw. Secur. 8(2), 179–188 (2008)

    Google Scholar 

  13. El Ouahmani, T., Chehri, A., Hakem, N.: Bio-inspired routing protocol in VANET networks—a case study. In: Elsevier’s Procedia Computer Science, 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Budapest, Hungary (2019)

    Google Scholar 

  14. Karedal, J., Czink, N., Paier, A., Tufvesson, F., Molisch, A.F.: Path loss modeling for vehicle-to-vehicle communications. IEEE Trans. Veh. Technol. 60(1), 323–328 (2011)

    Article  Google Scholar 

  15. Cheng, L., Henty, B.E., Stancil, D.D., Bai, F., Mudalige, P.: Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short-range communication (DSRC) frequency band. IEEE J. Sel. Areas Commun. 25(8), 1501–1516 (2007)

    Google Scholar 

  16. Molisch, A.F., Tufvesson, F., Karedal, J., Mecklenbrauker, C.F.: A survey on vehicle-to-vehicle propagation channels. IEEE Wirel. Commun. 16(6), 12–22 (2009)

    Article  Google Scholar 

  17. Schumacher, H., et al.: Vehicle-to-vehicle 802.11p performance measurements at urban intersections. In: Proceedings of IEEE ICC, Workshop on Intelligent Vehicular Networking, pp. 10–15. Ottawa, ON (2012)

    Google Scholar 

  18. Bernado, L., Roma, A., Paier, A., Zemen, T., et al.: In-tunnel vehicular radio channel characterization. In: Proceedings of IEEE Spring VTC, Budapest, Hungary, 15–18 May (2011)

    Google Scholar 

  19. Chehri, H., Chehri, A., Hakem, N.: In underground vehicular radio channel characterization. In: Elsevier’s Procedia Computer Science, 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Budapest, Hungary (2019)

    Google Scholar 

  20. Chehri, H., Chehri, A., Hakem, N.: Empirical radio channel characterization at 5.9 GHz for vehicle-to-infrastructure communication. In: IEEE 90th Vehicular Technology Conference, Hawaii, USA, 22–25 Sept (2019)

    Google Scholar 

  21. Chehri, H., Hakem, M.: Large scale propagation analysis of vehicle-to-vehicle communications at 5.9 GHz. In: IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 6–11 Memphis, Tennessee, USA (2014)

    Google Scholar 

  22. Viriyasitavat, W., Boban, M., Tsai, H.M., Vasilakos, A.: Vehicular communications: survey and challenges of channel and propagation models. IEEE Veh. Technol. Mag. 10, 55–66 (2015)

    Article  Google Scholar 

  23. Sun, R., Matolak, D.W., Liu, P.: 5 GHz V2V channel characteristics for parking garages. IEEE Trans. Veh. Technol. (2016)

    Google Scholar 

  24. Masson, E., Combeau, P., Berbineau, M., et al.: Radio wave propagation in arched cross section tunnels-simulations and measurements. J. Commun. 4(4), 276–283 (2009)

    Article  Google Scholar 

  25. Bernado, L., Roma, A., Paier, A., Zemen, T., et al.: In-tunnel vehicular radio channel characterization. In: Vehicular Technology Conference, pp. 1–5 (2011)

    Google Scholar 

  26. Shivaldova, V., et al: Performance analysis of vehicle-to-vehicle tunnel measurements at 5.9 GHz. In: 30th URSI General Assembly and Scientific Symposium (URSIGASS’11), IEEE, Istanbul, Turkey (2011)

    Google Scholar 

  27. Loredo, S., del Castillo, A., et al.: Small-scale fading analysis of the vehicular-to-vehicular channel inside tunnels. Wirel. Commun. Mobile Comput. 2017(1987437) (2017)

    Google Scholar 

  28. Bernado, L., Zemen, T., Tufvesson, F., Molisch, A.F., Mecklenbrauker, C.F.: Delay and doppler spreads of non-stationary vehicular channels for safety relevant scenarios. (2013) CoRR vol. abs/1305.3376

    Google Scholar 

  29. Hrovat, A., kandus, G., Javornuc, T.: A survey of radio propagation modeling for tunnels. IEEE Commun. Surv. Tutor. 16(2), 658–69 (2014)

    Google Scholar 

  30. Qureshi, M.A., Noor, R.M., Shamim, A., Shamshirband, S., Choo, K.K.R.: A lightweight radio propagation model for vehicular communication in road tunnels, PloS One 11(3) (2016)

    Google Scholar 

  31. Bilstrup, K., Uhlemann, E., Stroom, E., Bilstrup, U.: On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to vehicle communication. J. Wireless Commun. Netw. 1–13 (2009)

    Google Scholar 

  32. Al Hanbali, A., Altman, E., Nain, P.: A survey of TCP over ad hoc networks. IEEE Commun. Surv. Tutor. 2009, 22–36 (2005)

    Google Scholar 

  33. Torrent-Moreno, M, et al.: Vehicle-to-vehicle communication: fair transmit power control for safety-critical information. IEEE Trans. Veh. Tech. 58(7) (2009)

    Google Scholar 

  34. Mariyasagayam, M.N., Osafune, M., Lenardi, M: Enhanced multi-hop vehicular broadcast (MHVB) for active safety applications. In: 7th IEEE International Conference on ITS Telecommunications (2007)

    Google Scholar 

  35. Chehri, A., El Ouahmani, T., Hakem, N.: Mining and IoT-based vehicle ad-hoc network: industry opportunities and innovation. Internet Things 100117 (2019). ISSN: 2542-6605

    Google Scholar 

  36. Li, D., Huang, H., Li, X., Li, M., Tang, F.: A distance-based directional broadcast protocol for urban vehicular ad hoc network. In: IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Chehri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chehri, A., Chehri, H., Hakim, N., Saadane, R. (2020). Realistic 5.9 GHz DSRC Vehicle-to-Vehicle Wireless Communication Protocols for Cooperative Collision Warning in Underground Mining. In: Qu, X., Zhen, L., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2020. Smart Innovation, Systems and Technologies, vol 185. Springer, Singapore. https://doi.org/10.1007/978-981-15-5270-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5270-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5269-4

  • Online ISBN: 978-981-15-5270-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics