Skip to main content

The Impact of Increasing Minor Arterial Flow on Arterial Coordination: An Analysis Based on MAXBAND Model

  • Conference paper
  • First Online:
Smart Transportation Systems 2020

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 185))

  • 579 Accesses

Abstract

With the progress of urbanization, car ownership is experiencing explosive growth in China, which leads to heavy pressure on the urban road network. Arterial coordination strategy has been proved an effective method to avoid or alleviate traffic congestion. However, with the increasing proportion of flow on the minor arterial, arterial coordination efficiency might be affected. To figure out the problem, a numerical test is conducted by designing eight scenarios with different proportion of through movement and left turn flow on the minor arterials. MAXBAND model is applied for optimizing signal plans. The results show that average delay for vehicles on the arterials increases with the increasing of proportion of through movement flow, as well as the entire average delay. Average delay for vehicles on the minor arterials and two-way bandwidth decreases at same time. In other words, when the proportion of minor arterial flow increases, the arterial coordination efficiency would be reduced, especially for increasing left turn flow. This work reveals the improvement direction for arterial coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weng, J., Xue, S., Yang, Y., Yan, X., Qu, X.: In-depth analysis of drivers’ merging behaviour and rear-end crash risks in work zone merging areas. Accid. Anal. Prev. 77, 51–61 (2015)

    Article  Google Scholar 

  2. Xu, C., Yang, Y., Jin, S., Qu, Z., Hou, L.: Potential risk and its influencing factors for separated bicycle paths. Accid. Anal. Prev. 87, 59–67 (2016)

    Article  Google Scholar 

  3. Qu, X., Yu, Y., Zhou, M., Lin, C.T., Wang, X.: Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach. Appl. Energy 257, 114030 (2020)

    Article  Google Scholar 

  4. Zhou, M., Yu, Y., Qu, X.: Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: A reinforcement learning approach. IEEE Trans. Intell. Transp. Syst. 21(1), 433–443 (2020)

    Article  Google Scholar 

  5. Easa, S.M., Qu, X., Dabbour, E.: Improved pedestrian sight distance needs at railroad-highway grade crossings. J. Transp. Eng. Part A: Syst. 143(7), 04017027 (2017)

    Article  Google Scholar 

  6. Bie, Y., Cheng, S., Easa, S., Qu, X.: Stop line set back at a signalized roundabout: A new concept for traffic operations. J. Transp. Eng. ASCE 142(3), 05016001 (2016)

    Google Scholar 

  7. Jin, S., Qu, X., Zhou, D., Xu, C., Ma, D., Wang, D.: Estimating cycleway capacity and bicycle equivalent unit for electric bicycles. Transp. Res. Part A: Policy Pract. 77, 225–248 (2015)

    Google Scholar 

  8. Xu, J.: Traffic management and control, 1st edn. China Communications Press, Beijing (2007)

    Google Scholar 

  9. Morgan, J., Little, J.: Synchronizing traffic signals for maximal bandwidth. Oper. Res. 12(6), 896–912 (1964)

    Article  Google Scholar 

  10. Little, J., Kelson, M., Gartner, N.: MAXBAND: A program for setting signals on arteries and triangular networks. Transp. Res. Rec. 795, 40–46 (1981)

    Google Scholar 

  11. Chang, E., Cohen, S., Liu, C., Chaudhary, N., Messer, C.: MAXBAND-86: Program for optimizing left-turn phase sequence in multiarterial closed networks. Transp. Res. Rec. 1181, 61–67 (1988)

    Google Scholar 

  12. Gartner, N., Assmann, S., Lasaga, F., Hous, D.: MULTIBAND-a variable-bandwidth arterial progression scheme. Transp. Res. Rec. 1287, 212–222 (1990)

    Google Scholar 

  13. Stamatiadis, C., Gartner, N.: MULTIBAND-96: a program for variable-bandwidth progression optimization of multiarterial traffic networks. Transp. Res. Rec. 1554(1), 9–17 (1996)

    Article  Google Scholar 

  14. Lin, L., Tung, L., Ku, H.: Synchronized signal control model for maximizing progression along an arterial. J. Transp. Eng. 136(8), 727–735 (2009)

    Article  Google Scholar 

  15. Zhang, C., Xie, Y., Gartner, N., Stamatiadis, C., Arsava, T.: AM-band: an asymmetrical multi-band model for arterial traffic signal coordination. Transpo. Res. Part C: Emerg. Technol 58, 515–531 (2015)

    Article  Google Scholar 

  16. Yang, X., Cheng, Y., Chang, G.: A multi-path progression model for synchronization of arterial traffic signals. Transp. Res. part C: Emerg. Technol 53, 93–111 (2015)

    Article  Google Scholar 

  17. Zhang, L., Song, Z., Tang, X., Wang, D.: Signal coordination models for long arterials and grid networks. Transp. Res. Part C: Emerg. Technol. 71, 215–230 (2016)

    Article  Google Scholar 

  18. Cho, H., Huang, T., Huang, C.: Path-based MAXBAND with green-split variables and traffic dispersion. Transp. B: Transp. Dyn. 7(1), 726–740 (2019)

    Google Scholar 

  19. Ma, W., Zou, L., An, K., Gartner, N., Wang, M.: A partition-enabled multi-mode band approach to arterial traffic signal optimization. IEEE Trans. Intell. Transp. Syst. 20(1), 313–322 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Shen, L., Qu, X. (2020). The Impact of Increasing Minor Arterial Flow on Arterial Coordination: An Analysis Based on MAXBAND Model. In: Qu, X., Zhen, L., Howlett, R.J., Jain, L.C. (eds) Smart Transportation Systems 2020. Smart Innovation, Systems and Technologies, vol 185. Springer, Singapore. https://doi.org/10.1007/978-981-15-5270-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5270-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5269-4

  • Online ISBN: 978-981-15-5270-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics