Skip to main content

RPL-Based Hybrid Hierarchical Topologies for Scalable IoT Applications

  • Conference paper
  • First Online:
Evolutionary Computing and Mobile Sustainable Networks

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 53))

Abstract

The applications built nowadays are mainly distributed, and most of them have sensors enabling them to do it. Internet of Things in the same context is solving real-world problems. Although there are challenges still like on ground scalability, efficiency, etc. and a lot of other bottlenecks, in our work here we have focused on RPL routing protocol and the potential to scale under strained networks. Some real-world application scenarios like military and agriculture build in an environment with the “strained” transmission and interference ranges, which requires the nodes to be retained as part of Destination-Oriented Directed Acyclic Graph (DODAG). The simulation study done using Contiki OS-based Cooja simulation environment on hierarchical and circular network topologies for highly scalable and strained networks shows high energy consumption and the impact on the radio duty cycle on few selected nodes of DODAG. Combining the features of hierarchical and circular network topology, we propose a hybrid hierarchical topology with multiple sinks which resembles the real-world applications. The testing and relative comparison of RPL’s Objective Functions (OFs) consists of the following parameters: Power Consumption, Radio Duty Cycle, and possible topologies. The results of the simulation study of RPL protocol show that the proposed hybrid network topology results in much stable energy consumption and radio duty cycle increasing the scale and strain on the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yushi L, Fei J, Hui Y (2012) Study on application modes of military internet of things (MIOT). In: 2012 IEEE international conference on computer science and automation engineering (CSAE), vol 3. IEEE, pp 630–634

    Google Scholar 

  2. Anurag D, Roy S, Bandyopadhyay S (2008) Agro-sense: precision agriculture using sensor based wireless mesh network. In: First ITU-T kaleidoscope academic conference—innovations in NGN: future Network and services

    Google Scholar 

  3. Aijaz A, Su H (2015) Abdol-Hamid Aghvami CORPL: a routing protocol for cognitive radio enabled ami networks. IEEE Trans Smart Grid 6(1)

    Google Scholar 

  4. Valanarasu MR (2019) Smart and secure Iot and AI integration framework for hospital environment. J ISMAC 1(03):172–179

    Article  Google Scholar 

  5. Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P (2009) Collection tree protocol. In: Proceedings of the international conference on embedded networked sensor systems (ACM SenSys), Berkeley, CA, USA

    Google Scholar 

  6. Clausen T, Yi J, Herberg U (2017) Lightweight on-demandadhocdistance-vectorrouting-nextgeneration(LOADng): protocol, extension, and applicability, pp 125–140

    Google Scholar 

  7. Kumar N, Motia S, Jain AK (2018) Performance analysis of routing protocol for low power and lossy links (RPL) in military hierarchical networks, IAC3T

    Google Scholar 

  8. Gaddour O, Koubâa A (2012) RPL in a nutshell: a survey. Comput Netw 56(14):3163–3178

    Article  Google Scholar 

  9. Clausen T, Herberg U, Philipp M (2011) A critical evaluation of the IPv6 routing protocol for low power and lossy networks (RPL). In: The IEEE 7th international conference on wireless and mobile computing, networking and communications (WiMob), Wuhan, 2011, pp 365–372

    Google Scholar 

  10. Afonso O, Vazão T (2016) Low-power and lossy networks under mobility: a survey. Comput Netw 107(2):339–352

    Google Scholar 

  11. Kim HS, Ko J, Culler DE, Paek J (2017) Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): a survey. IEEE Commun Surv Tutor 19(4):2502–2525

    Google Scholar 

  12. Liu X, Sheng Z, Yin C, Ali F, Roggen D (2017) Performance analysis of routing protocol for low power and lossy networks (RPL) in large scale networks. IEEE Internet Things J 4(6):2172–2185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giri, A., Annapurna, D. (2021). RPL-Based Hybrid Hierarchical Topologies for Scalable IoT Applications. In: Suma, V., Bouhmala, N., Wang, H. (eds) Evolutionary Computing and Mobile Sustainable Networks. Lecture Notes on Data Engineering and Communications Technologies, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-15-5258-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5258-8_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5257-1

  • Online ISBN: 978-981-15-5258-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics