Skip to main content

Smart Lightweight MR Damper for the Enhancement of Seismic Mitigation

  • Conference paper
  • First Online:
Advances in Structural Technologies

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 81))

  • 482 Accesses

Abstract

Magnetorheological (MR) fluids with exceptional rheological properties are skilled in exhibiting quick performance to control vibrations during earthquakes. The significant damping properties of MR fluids were effectively controlled with the help of externally applied magnetic field and current. Currently, MR fluids with nano Fe3O4 iron particles are used in the preparation of MR fluid to reduce sedimentation. Fabrication of MR damper consists of nylon material to reduce the weight and resist high-temperature distortion. The weight of the proposed MR damper was about 445 g with the magnetic core. The MR fluid of proportions 30% (MRF30), 45% (MRF 45) and 60% (MRF 60) of iron particle is prepared, and the cyclic load test frequency is 0.5 Hz and amplitude, ± 5 mm. The maximum damping force was found to be 1.032 kN obtained from the MR fluid containing 60% Fe3O4 particles in magnatec oil. For variable frequency, the time history loading test was done with El Centro ground acceleration data where the maximum damping force for MRF 60 is 1.3 kN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chauhan ND, Patel D (2018) Design Optimization of flow mode magnetorheological damper. Appl Mech Mater 877:403–408. (February 2018). https://doi.org/10.4028/www.scientific.net/amm.877.403

  2. Goldasz J (2013) Study of a magnetorheological fluid damper with multiple annular flow gaps. Int J Veh Des 62(1):21. https://doi.org/10.1504/ijvd.2013.051601

    Article  Google Scholar 

  3. Liao CR, Zhao DX, Xie L, Liu Q (2012) A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode. Smart Mater Struct 21(8):085005. (July 13, 2012). https://doi.org/10.1088/0964-1726/21/8/085005

  4. Jia Y (2012) Design and experimental research on the vehicle twin-tube magnetorheological fluids damper based on pressure driven flow mode. J Mech Eng 48(10):103. https://doi.org/10.3901/jme.2012.10.103

    Article  Google Scholar 

  5. Yu J, Dong X, Sun S, Li W (2018) Hysteretic model of a rotary magnetorheological damper in helical flow mode. Commun Comput Inf Sci, 15–24. https://doi.org/10.1007/978-981-13-2384-3_2

  6. Fu B, Liao C, Li Z, Xie L, Zhang P, Jian X (2017) Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode. Smart Mater Struct 26(2):025025. (January 24, 2017). https://doi.org/10.1088/1361-665x/aa56f4

  7. Ciocanel C, Nguyen T, Elahinia M, Naganathan NG (2007) Squeeze-flow mode magnetorheological fluid mount. In: Electrorheological Fluids and Magnetorheological Suspensions (October 2007). https://doi.org/10.1142/9789812771209_0079

  8. Kim K, Chen Z, Yu D, Rim C (2016) Design and experiments of a novel magneto-rheological damper featuring bifold flow mode. Smart Mater Struct 25(7):075004. (May 24, 2016). https://doi.org/10.1088/0964-1726/25/7/075004

  9. Zeinali M, Mazlan SA, Choi S-B, Imaduddin F, Hamdan LH (2016) Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper. Smart Mater Struct 25(5):055010. (March 30, 2016). https://doi.org/10.1088/0964-1726/25/5/055010

  10. Daniel C, Magdalene A, Hemalatha G, Tensing D, Sundhar Manoharan S (2016) Experimental investigation on magnetorheological damper for seismic resistance of structures with nano Fe3O4 MR fluid. Int J Appl Bio-Eng 10(2):1–6. https://doi.org/10.18000/ijabeg.10140

  11. Cruze D, Gladston H, Immanuel S, Loganathan S, Dharmaraj T, Manoharan Solomon S (2018) Experimental investigation on magnetorheological damper for RCC frames subjected to cyclic loading. Adv Civil Eng Mater 7(3):20170112. (June 14, 2018). https://doi.org/10.1520/acem20170112

Download references

Acknowledgements

The authors thank Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India, for their constant support. We also extend our acknowledgement to the Department of Science and Technology (Grant No: DST/TSG/STS/2015/30-G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daniel, C., Hemalatha, G., Sarala, L., Tensing, D., Manoharan, S.S. (2021). Smart Lightweight MR Damper for the Enhancement of Seismic Mitigation. In: Adhikari, S., Dutta, A., Choudhury, S. (eds) Advances in Structural Technologies. Lecture Notes in Civil Engineering, vol 81. Springer, Singapore. https://doi.org/10.1007/978-981-15-5235-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5235-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5234-2

  • Online ISBN: 978-981-15-5235-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics