Skip to main content

Advancement and Challenges in Parkinson’s Disease: A Recent Outlook

  • Chapter
  • First Online:
Principles of Neurochemistry

Abstract

Parkinson’s disease (PD) is a multifactorial neurodegenerative disease that disturbs the dopamine neural circuit by affecting the basal nuclei. It is symptomized as motor and cognitive disturbances. Standard therapeutic regimen exhibits improvement in motor symptoms but is ineffectual in reversing the condition and delaying the progression of the disease. Thus, alternative approaches have been pursued in various areas. This perspective analyzes the various strategies studied and researched for treatment of PD along with contributions in the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ellis JM, Fell MJ (2017) Current approaches to the treatment of Parkinson’s disease. Bioorg Med Chem Lett 27:4247–4255

    Article  CAS  PubMed  Google Scholar 

  2. Stopping Parkinson’s Disease before it Starts (2019). https://medicalxpress.com/news/2019-06-parkinson-disease.html. Accessed 14 Aug 2019

  3. Dorszewska J, Kozubski W (2016) Genetic and biochemical factors in Parkinson’s disease. In: Dorszewska J, Kozubski W (eds) Challenges in Parkinson’s disease. IntechOpen, London

    Chapter  Google Scholar 

  4. Dorszewska J, Prendecki M, Lianeri M, Kozubski W (2014) Molecular effects of L-dopa therapy in Parkinson’s disease. Curr Genomics 15:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parkinson’s Disease (2019). https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/diagnosis-treatment/drc-20376062. Accessed 16 Aug 2019

  6. Perez-Lloret S, Barrantes FJ (2016) Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Park Dis 2:16001

    Article  CAS  Google Scholar 

  7. What are Anticholinergics? (2019). https://parkinsonsdisease.net/medications/anticholinergics/. Accessed 16 Aug 2019

  8. Medications Used To Treat Parkinson’s (2019). https://parkinsonsdisease.net/medications/. Accessed 16 Aug 2019

  9. Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK (2014) Mitochondria: prospective targets for neuroprotection in Parkinson’s disease. Curr Pharm Des 20:5558–5573

    Article  CAS  PubMed  Google Scholar 

  10. Freitas ME, Fox SH (2016) Nondopaminergic treatments for Parkinson’s disease: current and future prospects. Neurodegenerative Dis Manag 6:249–268

    Article  Google Scholar 

  11. FDA (2019) FDA approves new add-on drug to treat off episodes in adults with Parkinson’s disease. https://www.fda.gov/news-events/press-announcements/fda-approves-new-add-drug-treat-episodes-adults-parkinsons-disease. Accessed 23 Aug 2019

  12. Parkinson’s Tozadenant Trial Discontinued (2019). https://www.michaeljfox.org/news/parkinsons-tozadenant-trial-discontinued. Accessed 23 Aug 2019

  13. Yuan G, Jankins TC, Patrick CG Jr, Philbrook P, Sears O, Hatfield S, Sitkovsky M, Vasdev N, Liang SH, Ondrechen MJ, Pollastri MP, Jones GB (2017) Fluorinated adenosine A2A receptor antagonists inspired by preladenant as potential cancer immunotherapeutics. Int J Med Chem 2017:1–8. https://www.hindawi.com/journals/ijmc/2017/4852537. Accessed 23 Aug 2019

    Google Scholar 

  14. Isaacson SH, Skettini J (2014) Neurogenic orthostatic hypotension in Parkinson’s disease: evaluation, management, and emerging role of droxidopa. Vasc Health Risk Manag 10:169–176

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sánchez-ferro Á, Benito-león J, Gómez-esteban JC (2013) The management of orthostatic hypotension in Parkinson’s disease. Front Neurol 4:1–11

    Article  Google Scholar 

  16. Treatment of Orthostatic Intolerance in Patients With Parkinson’s Disease using Midodrine (2019). https://clinicaltrials.gov/ct2/show/NCT02365012. Accessed 23 Aug 2019

  17. Buddhala C, Loftin SK, Kuley BM, Cairns NJ, Campbell MC, Perlmutter JS, Kotzbauer PT (2015) Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann Clin Transl Neurol 2:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trenkwalder C et al (2015) Prolonged-release oxycodone—naloxone for treatment of severe pain in patients with Parkinson’s disease (PANDA): a double-blind, randomised, placebo-controlled trial. Lancet Neurol 14:1161–1170

    Article  CAS  PubMed  Google Scholar 

  19. Blair HA, Dhillon S (2017) Safinamide: a review in Parkinson’s disease. CNS Drugs 31:169–176

    Article  CAS  PubMed  Google Scholar 

  20. FDA Accepts New Drug Application for Opicapone as Add-on Therapy (2019). https://parkinsonsnewstoday.com/2019/07/15/fda-accepts-new-drug-application-opicapone-add-on-therapy-parkinsons-neurocrine-biosciences/. Accessed 24 Aug 2019

  21. Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Cai J, Wei X, Bazzan AJ, Zhong L, Bowen B, Intenzo CM, Iacovitti L, Newberg AB (2016) N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLoS One 11:1–15

    Google Scholar 

  22. Pires AO, Teixeira FG, Sousa N (2017) Old and new challenges in Parkinson’s disease therapeutics. Prog Neurobiol 156:69–89

    Article  CAS  PubMed  Google Scholar 

  23. Pandey S (2012) Parkinson’s disease: recent advances. J Assoc Physicians India 60:30–32

    PubMed  Google Scholar 

  24. Shukla AW, Okun MS (2013) Surgical treatment of Parkinson’s disease: patients, targets, devices, and approaches. Neurotherapeutics 11:47–59

    Article  Google Scholar 

  25. A Responsive Closed-Loop Approach to Treat Freezing of Gait in Parkinson’s Disease (2019). https://clinicaltrials.gov/ct2/show/NCT02318927. Accessed 25 Aug 2019

  26. Combined Deep Brain Stimulation for Parkinson’s Disease (2019). https://clinicaltrials.gov/ct2/show/NCT01485276. Accessed 25 Aug 2019

  27. Randomised Crossover Trial of Deep Brain Stimulation of Differential Posterior Subthalamic Area Regions in Parkinson’s Disease and Tremor (2019). https://clinicaltrials.gov/ct2/show/NCT01945567. Accessed 25 Aug 2019

  28. Mandler M, Valera E, Rockenstein E, Mante M, Weninger H, Patrick C, Adame A, Schmidhuber S, Santic R, Schneeberger A, Schmidt W, Mattner F, Masliah E (2015) Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener 10:1–15

    Article  Google Scholar 

  29. George S, Brundin P (2015) Immunotherapy in Parkinson’s disease: micromanaging alpha-synuclein aggregation. J Park Dis 5:413–424

    Google Scholar 

  30. Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, Koller M, Zago W, Ness DK, Griffith SG, Grundman M, Soto J, Ostrowitzki S, Boess FG, Martin-Facklam M, Quinn JF, Isaacson SH, Omidvar O, Ellenbogen A, Kinney GG (2018) Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 75:1206–1214

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brys M, Fanning L, Hung S, Ellenbogen A, Penner N, Yang M, Welch M, Koenig E, David E, Fox T, Makh S, Aldred J, Goodman I, Pepinsky B, Liu Y, Graham D, Weihofen A, Cedarbaum JM (2019) Randomized phase I clinical trial of anti-alpha-synuclein antibody BIIB054. Mov Disord 34:1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Single-Ascending Dose Study of BIIB054 in Healthy Participants and Early Parkinson’s Disease (2019). https://clinicaltrials.gov/ct2/show/NCT02459886. Accessed 30 Aug 2019

  33. Zella SMA, Metzdorf J, Ciftci E, Ostendorf F, Muhlack S, Gold R, Tönges L (2019) Emerging immunotherapies for Parkinson disease. Neurol Ther 8:29–44

    Article  PubMed  Google Scholar 

  34. AFFITOPE®PD03A (2019) Affiris announces top line results of first-in-human clinical study using AFFITOPE®PD03A, Confirming immunogenicity and safety profile In Parkinson’s disease patients. https://affiris.com/news/affiris-announces-top-line-results-of-first-in-human-clinical-study-using-affitope/. Accessed 30 Aug 2019

  35. Axelsen TM, Woldbye DPD (2018) Gene therapy for Parkinson’s disease, an update. J Park Dis 8:195–215

    Google Scholar 

  36. Sanders TH, Jaeger D (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-OHDA lesioned mice. Neurobiol Dis 95:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uehara T, Choong CJ, Nakamori M, Hayakawa H, Nishiyama K, Kasahara Y, Baba K, Nagata T, Yokota T, Tsuda H, Obika S, Mochizuki H (2019) Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci Rep 9:1–13

    Article  Google Scholar 

  38. Nakamori M, Junn E, Mochizuki H, Mouradian MM (2019) Nucleic acid-based therapeutics for Parkinson’s disease. Neurotherapeutics 16:287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de Ynigo-Mojado L, Martin-Ruiz I, Sutherland JD (2011) Efficient allele-specific targeting of LRRK2 R1441 mutations mediated by RNAi. PLoS One 6:1–10

    Google Scholar 

  40. Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BC, Song J, Lu J, Cheung KH, Li M (2019) Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int J Mol Sci 20:1–15

    Google Scholar 

  41. Sardi SP, Cedarbaum JM, Brundin P (2018) Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord 33:684–696

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nilotinib in Parkinson’s Disease (NILO-PD) (2019). https://clinicaltrials.gov/ct2/show/NCT03205488. Accessed 2 Sept 2019

  43. Phase 1 Study of NPT200-11 in Healthy Subjects (2019). https://clinicaltrials.gov/ct2/show/NCT02606682. Accessed 2 Sept 2019

  44. Multiple Dose Safety Study of NPT088 in Patients With Mild to Moderate Probable Alzheimer’s Disease (2019). https://clinicaltrials.gov/ct2/show/NCT03008161. Accessed 3 Sept 2019

  45. Gonzalez C, Bonilla S, Flores AI, Cano E, Liste I (2016) An update on human stem cell-based therapy in Parkinson’s disease. Curr Stem Cell Res Ther 11:561–568

    Article  CAS  PubMed  Google Scholar 

  46. Barker RA, Drouin-Ouellet J, Parmar M (2015) Cell-based therapies for Parkinson disease-past insights and future potential. Nat Rev Neurol 11:492–503

    Article  CAS  PubMed  Google Scholar 

  47. TRANSEURO (2019) TRANSEURO Open Label Transplant Study in Parkinson’s Disease. https://clinicaltrials.gov/ct2/show/NCT01898390. Accessed 4 Sept 2019

  48. Parmar M, Torper O, Drouin-Ouellet J (2019) Cell-based therapy for Parkinson’s disease: a journey through decades toward the light side of the force. Eur J Neurosci 49:463–471

    Article  PubMed  Google Scholar 

  49. Stoker TB, Blair NF, Barker RA (2017) Neural grafting for Parkinson’s disease: challenges and prospects. Neural Regen Res 12:389–392

    Article  PubMed  PubMed Central  Google Scholar 

  50. Medicine P, Pluripotent I (2019) Treatment of Parkinson’s disease through personalized medicine and induced pluripotent stem cells. Cell 8:2–15

    Google Scholar 

  51. Hayashi T, Wakao S, Kitada M, Ose T, Watabe H, Kuroda Y, Mitsunaga K, Matsuse D, Shigemoto T, Ito A, Ikeda H, Fukuyama H, Onoe H, Tabata Y, Dezawa M (2013) Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Invest 123:272–284

    Article  CAS  PubMed  Google Scholar 

  52. Khoo MLM, Tao H, Meedeniya ACB, Mackay-Sim A, Ma DDF (2011) Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 6:1–16

    Article  Google Scholar 

  53. Filho DM, Ribeiro PDC, Oliveira LF, de Paula DRM, Capuano V, de Assunção TSF, da Silva VJD (2018) Therapy with mesenchymal stem cells in Parkinson disease history and perspectives. Neurologist 23:141–147

    Article  Google Scholar 

  54. Inden M, Yanagisawa D, Hijioka M (2016) Annals of neurodegenerative disorders therapeutic effects of mesenchymal stem cells for Parkinson’s disease. Ann Neurodegener Disord 1002:1–8

    Google Scholar 

  55. AZD5904 Mechanism of action: Myeloperoxidase (MPO) inhibitor (2019). https://openinnovation.astrazeneca.com/azd5904.html. Accessed 10 Sept 2019

  56. First Parkinson’s Patient Dosed in Early Trial of DNL151, Potential LRRK2 Inhibitor (2019). https://parkinsonsnewstoday.com/2019/09/10/1st-parkinsons-patient-dosed-in-phase-1b-trial-of-dnl151-potential-lrrk2-inhibitor/. Accessed 10 Sept 2019

  57. Study to Evaluate DNL201 in Subjects With Parkinson’s Disease (2019). https://clinicaltrials.gov/ct2/show/NCT03710707. Accessed 10 Sept 2019

  58. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN (2018) In silico studies targeting G-protein coupled receptors for drug research against Parkinson’s disease. Curr Neuropharmacol 16:786–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balestrino R, Schapira AHV (2018) Glucocerebrosidase and Parkinson disease: molecular, clinical, and therapeutic implications. Neuroscientist 24:540–559

    Article  CAS  PubMed  Google Scholar 

  60. Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS (2019) Emerging therapies in Parkinson disease—repurposed drugs and new approaches. Nat Rev Neurol 15:204–233

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, M., Alenezi, S.K. (2020). Advancement and Challenges in Parkinson’s Disease: A Recent Outlook. In: Mathew, B., Thomas Parambi, D.G. (eds) Principles of Neurochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5167-3_8

Download citation

Publish with us

Policies and ethics