Skip to main content

Orthonormal Wavelet Transform for Efficient Feature Extraction for Sensory-Motor Imagery Electroencephalogram Brain–Computer Interface

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1166))

Abstract

Wavelet Transform (WT) is a well-known method for localizing frequency in time domain in transient and non-stationary signals like electroencephalogram (EEG) signals. These EEG signals are used for non-invasive Brain–Computer Interface (BCI) system design. Generally, the signals are decomposed in dyadic (two-band) frequency bands for frequency localization in time domain. The triadic approach involves the filtering of EEG signals into three frequency filter bands: low-pass filter, high-pass filter, and band-pass filter. The sensory-motor imagery (SMI) frequencies (α, β, and high γ) can be localized from non-stationary EEG signals in using this triadic wavelet filter efficiently. Further features can be extracted using common spatial pattern (CSP) algorithms and these features can be classified by machine learning algorithms. This paper discusses dyadic and non-dyadic filtering in detail and also proposes an approach for frequency localization using three-band orthogonal wavelet transformation for classification of sensory-motor imagery electroencephalogram (EEG) signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Birbaumer, W. Heetderks, J. Wolpaw, W. Heetderks, D. McFarland, P.H. Peckham, G. Schalk, E. Donchin, L. Quatrano, C. Robinson, T. Vaughan, Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  2. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control (in eng). Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  3. M.A. Lebedev, M.A. Nicolelis, Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97(2), 767–837 (2017)

    Article  Google Scholar 

  4. L.F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  5. N. Birbaumer, T. Hinterberger, A. Kubler, N. Neumann, The thought-translation device (ttd): Neurobehavioral mechanisms and clinical outcome. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 120–123 (2003)

    Article  Google Scholar 

  6. J. Wolpaw, D. McFarland, T. Vaughan, G. Schalk, The wadsworth center brain computer interface (BCI) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 204–207 (2003)

    Article  Google Scholar 

  7. G. Pfurtscheller, C. Neuper, G. Muller, B. Obermaier, G. Krausz, A. Schlogl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris, M. Wrtz, G. Supp, C. Schrank, Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 177–180 (2003)

    Article  Google Scholar 

  8. J. Borisoff, S. Mason, G. Birch, Brain interface research for asynchronous control applications. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 160–164 (2006)

    Article  Google Scholar 

  9. M.W. Slutzky, R.D. Flint, Physiological properties of brain-machine interface input signals. J. Neurophysiol. 118(2), 1329–1343 (2017)

    Article  Google Scholar 

  10. T. Gandhi, B.K. Panigrahi, S. Anand, A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17), 3051–3057 (2011)

    Article  Google Scholar 

  11. L.R. Hochberg et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  12. M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, A.B. Schwartz, Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008)

    Article  Google Scholar 

  13. S.-P. Kim, J.D. Simeral, L.R. Hochberg, J.P. Donoghue, G.M. Friehs, M.J. Black, Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 19(2), 193–203 (2011)

    Article  Google Scholar 

  14. D.M. Taylor, S.I.H. Tillery, A.B. Schwartz, Direct cortical control of 3D neuroprosthetic devices. Science 296(5574), 1829–1832 (2002)

    Article  Google Scholar 

  15. J. Vogel et al., An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. Int. J. Rob. Res. 34(6), 763–780 (2015)

    Article  Google Scholar 

  16. N. Birbaumer et al., A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)

    Article  Google Scholar 

  17. L. Bi, X.-A. Fan, Y. Liu, EEG-based brain-controlled mobile robots: a survey. IEEE Trans. Hum. Mach. Syst. 43(2), 161–176 (2013)

    Article  Google Scholar 

  18. J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, B. He, Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6, 38565 (2016)

    Article  Google Scholar 

  19. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.R. Müller, Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc. Mag. 25, 41–56 (2008)

    Article  Google Scholar 

  20. F. Lotte, M. Congedo, EEG Feature Extraction (Wiley, New York, 2016). pp 127–43

    Google Scholar 

  21. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1–13 (2007)

    Article  Google Scholar 

  22. C Neuper, G. Pfurtscheller, Neurofeedback training for BCI control, in Brain–Computer Interfaces: Revolutionizing Human-Computer Interaction, ed. by B. Graimann, G. Pfurtscheller, B. Allison (Springer, Berlin, 2010). pp. 65–78

    Google Scholar 

  23. M. Fatourechi, R. Ward, S. Mason, J. Huggins, A. Schlogl, G. Birch, Comparison of evaluation metrics in classification applications with imbalanced datasets International Conference on Machine Learning and Applications (IEEE, 2008). pp 777–82

    Google Scholar 

  24. H.D.N. Alves, Fault diagnosis and evaluation of the performance of the overcurrent protection in radial distribution networks based on wavelet transform and rule-based expert system, in 2015 IEEE Symposium Series on Computational Intelligence (IEEE, 2015). pp. 1852–1859

    Google Scholar 

  25. Y. Shi, X. Zhang, A Gabor atom network for signal classification with application in radar target recognition. IEEE Trans. Signal Process., 2994–3004 (2001)

    Google Scholar 

  26. A. Bruce, H.Y. Gao, Applied Wavelet Analysis with S-Plus (Springer, 1996)

    Google Scholar 

  27. D. Gabor, Theory of communication. Part 1: The analysis of information. J. Inst. Electr. Eng. Part III: Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  28. D.M. Monro, B.G. Sherlock, Space-frequency balance in biorthogonal wavelets, in Proceedings of International Conference on Image Processing, vol. 1 (IEEE, 1997). pp. 624–627

    Google Scholar 

  29. L. Shen, Z. Shen, Compression with time-frequency localization filters. Wavelets and Splines, 428–443 (2006)

    Google Scholar 

  30. B. Boashash, N.A. Khan, T. Ben-Jabeur, Time–frequency features for pattern recognition using high-resolution TFDs: A tutorial review. Digit. Signal Proc. 40, 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  31. R. San-Segundo, J.M. Montero, R. Barra-Chicote, F. Fernández, J.M. Pardo, Feature extraction from smartphone inertial signals for human activity segmentation. Sig. Process. 120, 359–372 (2016)

    Article  Google Scholar 

  32. A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis, Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. (2007)

    Google Scholar 

  33. U. Orhan, M. Hekim, M. Ozer, EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)

    Article  Google Scholar 

  34. E.D. Übeyli, Combined neural network model employing wavelet coefficients for EEG signals classification. Digit. Signal Proc. 19(2), 297–308 (2009)

    Article  Google Scholar 

  35. A.N. Akansu, P.A. Haddad, R.A. Haddad, P.R. Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets (Academic Press, 2001)

    Google Scholar 

  36. M. Rhif, A. Ben Abbes, I.R. Farah, B. Martínez, Y. Sang, Wavelet transform application for/in non-stationary time-series analysis: a review. Appl. Sci. 9(7), 1345 (2019)

    Article  Google Scholar 

  37. H. Xie, J.M. Morris, Design of orthonormal wavelets with better time-frequency resolution, in Wavelet Applications, vol. 2242 (International Society for Optics and Photonics, March 1994). pp. 878–887

    Google Scholar 

  38. M. Sharma, V.M. Gadre, S. Porwal, An eigenfilter-based approach to the design of time-frequency localization optimized two-channel linear phase biorthogonal filter banks. Cir. Syst. Signal Process. 34(3), 931–959 (2015)

    Article  Google Scholar 

  39. R. Sharma, R. Pachori, U. Acharya, Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17(2), 669–691 (2015)

    Article  Google Scholar 

  40. V. Bajaj, R.B. Pachori, Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2011)

    Article  Google Scholar 

  41. R. Ebrahimpour, K. Babakhan, S.A.A.A. Arani, S. Masoudnia, Epileptic seizure detection using a neural network ensemble method and wavelet transform. Neural Netw. World 22(3), 291 (2012)

    Article  Google Scholar 

  42. K. Abualsaud, M. Mahmuddin, M. Saleh, A. Mohamed, Ensemble classifier for epileptic seizure detection for imperfect EEG data. Sci. World J. (2015)

    Google Scholar 

  43. E. Parvinnia, M. Sabeti, M.Z. Jahromi, R. Boostani, Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm. J. King Saud Univ. Comput. Inf. Sci. 26(1), 1–6 (2014)

    Article  Google Scholar 

  44. T. Lin, P. Hao, S. Xu, Matrix factorizations for reversible integer implementation of orthonormal M-band wavelet transforms. Sig. Process. 86(8), 2085–2093 (2006)

    Article  Google Scholar 

  45. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  46. M. Sharma, R.S. Tan, U.R. Acharya, Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters. Inform. Med. Unlocked 16, 100221 (2019)

    Article  Google Scholar 

  47. G. Chandel, P. Upadhyaya, O. Farooq, Y.U. Khan, Detection of seizure event and its onset/offset using orthonormal triadic wavelet based features. IRBM 40(2), 103–112 (2019)

    Article  Google Scholar 

  48. D. Bhati, R.B. Pachori, V.M. Gadre, Optimal design of three-band orthogonal wavelet filter bank with stop band energy for identification of epileptic seizure eeg signals, in Machine Intelligence and Signal Analysis (Springer, Singapore, 2019). pp. 197–207

    Google Scholar 

  49. B. Benchabane, M. Benkherrat, B. Burle, F. Vidal, T. Hasbroucq, S. Djelel, A. Belmeguenai, Wavelets statistical denoising (WaSDe): individual evoked potential extraction by multi-resolution wavelets decomposition and bootstrap. IET Signal Proc. 13(3), 348–355 (2019)

    Article  Google Scholar 

  50. E. Niedermeyer, The normal EEG of the waking adult, in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, vol. 167 (2005). pp. 155–164

    Google Scholar 

  51. T. Lin, S. Xu, Q. Shi, P. Hao, An algebraic construction of orthonormal M-band wavelets with perfect reconstruction. Appl. Math. Comput. 172(2), 717–730 (2006)

    Article  MathSciNet  Google Scholar 

  52. K.P. Thomas, C. Guan, A.P. Vinod, C.T. Lau, K.K. Ang, A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans. Biomed. Eng. 56(11), 2730–2733 (2009)

    Article  Google Scholar 

  53. W. Wu, Z. Chen, X. Gao, Y. Li, E.N. Brown, S. Gao, Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 639–653 (2015)

    Google Scholar 

  54. S.H. Park, D. Lee, S.G. Lee, Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 2 (2018)

    Article  Google Scholar 

  55. T. Michael, et al., Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)

    Google Scholar 

  56. P. Chaudhary, R. Agrawal, A comparative study of linear and non-linear classifiers in sensory motor imagery based brain computer interface. J. Comput. Theor. Nanosci. 16(12), 5134–5139 (2019)

    Google Scholar 

  57. P. Chaudhary, R. Agrawal, Emerging threats to security and privacy in brain computer interface. Int. J. Adv. Stud. Sci. Res. 3(12) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhary, P., Agrawal, R. (2021). Orthonormal Wavelet Transform for Efficient Feature Extraction for Sensory-Motor Imagery Electroencephalogram Brain–Computer Interface. In: Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds) International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-15-5148-2_54

Download citation

Publish with us

Policies and ethics