Skip to main content

Algal Metabolites and Phyco-Medicine

  • Chapter
  • First Online:

Abstract

Research on bioproducts is an exciting area for scientists over the decades due to global applications in daily life. A large number of modern drugs have been isolated from natural resources, especially both higher and lower plants and different microorganisms. The discovery of these drugs is mainly based on traditional knowledge among people. It is a fact that the majority of developing countries depend on traditional herbal medicines for various disorders. The pharmacological properties of medicinally important plants mainly depend on their metabolites. The detection of the bioactive compounds provides unlimited scope for new drug leads of our interest. Thus the isolation and purification of plant-derived novel drugs have a significant role in the form of food additives, nutraceuticals, medicines, cosmetics, and other value-added compounds. Algae are a great source of bioactive molecules of diverse therapeutic value and have broad commercial applications. Both microalgae and seaweeds are a rich source of primary and secondary metabolites such as carbohydrates, fatty acids, carotenoids, lectins, mycosporine-like amino acids, polyphenols, alginic acid, agar, carrageenan, etc. There are still many algae that have not been explored. Many algal species have gained significant attention in recent years because of their beneficial health impact. Phyco-medicine denotes the use of algal sources as herbal medicine with therapeutic potential. There is an increased curiosity to develop algae-based medicine and its commercial application. This chapter highlights the importance of bioactive molecules present in different groups of algae and its applications in the pharmaceutical and food industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Raouf N, Al-Enazi NM, Al-Homaidan AA, Ibraheem IBM, Al-Othman MR, Hatamleh AA (2015) Antibacterial -amyrin isolated from Laurencia microcladia. Arab J Chem 8:32–37

    Article  CAS  Google Scholar 

  • Ahmad VU, Uddin S (1992) A triterpenoid saponin from Zygophyllum propinquum. Phytochemistry 31(3):1051–1054

    Article  CAS  Google Scholar 

  • Ahn JH, Yang YI, Lee KT, Choi JH (2015) Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. J Cancer Res Clin Oncol 141(2):255–268

    Article  PubMed  CAS  Google Scholar 

  • Alghazeer R, Whida F, Abduelrhman E, Gammoudi F, Naili M (2013) In vitro antibacterial activity of alkaloid extracts from green, red and brown macroalgae from western coast of Libya. Afr J Biotechnol 12(51):7086–7091

    Google Scholar 

  • Ali MS, Saleem M, Yamdagni R, Ali MA (2002) Steroid and antibacterial steroidal glycosides from marine green alga Codium iyengarii Borgesen. Nat Prod Lett 16(6):407–413

    Article  PubMed  CAS  Google Scholar 

  • Ambati R, Phang SM, Ravi S, Aswathanarayana R (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12(1):128–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anulika NP, Ignatius EO, Raymond ES, Osasere O-I, Abiola AH (2016) The chemistry of natural product: plant secondary metabolites. Int J Technol Enhance Emerg Eng Res 4(8). ISSN 2347-4289

    Google Scholar 

  • Bakar K, Mohamad H, Tan HS, Latip J (2019) Sterols compositions, antibacterial, and antifouling properties from two Malaysian seaweeds: Dictyota dichotoma and Sargassum granuliferum. J Appl Pharm Sci 9(10):047–053

    Article  CAS  Google Scholar 

  • Banskota AH, Sperker S, Stefanova R, McGinn PJ, O’Leary SJ (2019) Antioxidant properties and lipid composition of selected microalgae. J Appl Phycol 31(1):309–318

    Article  CAS  Google Scholar 

  • Barbosa M, Valentão P, Andrade P (2014) Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 12(9):4934–4972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baviskar JW, Khandelwal SR (2015) Extraction, detection and identification of flavonoids from microalgae: an emerging secondary metabolite. Int J Curr Microbiol App Sci 2:110–117

    Google Scholar 

  • Bayu, A., & Handayani, T. (2018, December). High-value chemicals from marine macroalgae: opportunities and challenges for marine-based bioenergy development. IOP Conf Ser Earth Environ Sci 209, no. 1, 012046.

    Google Scholar 

  • Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68(12):1793–1795

    Article  PubMed  CAS  Google Scholar 

  • Becker EW (1994) Microalgae biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bhattacharjee M (2016) Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 9:43–47

    Article  CAS  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33

    Article  PubMed Central  CAS  Google Scholar 

  • Bourgougnon N, Stiger-Pouvreau V (2011) Chemodiversity and bioactivity within red and brown macroalgae along the French coasts, metropole and overseas departments and territories. In: Kim S‐K (ed) Handbook of marine macroalgae. Wiley, Chichester, pp 58–105

    Chapter  Google Scholar 

  • Bultel-Poncé V, Etahiri S, Guyot M (2002) New ketosteroids from the red alga Hypnea musciformis. Bioorg Med Chem Lett 12(13):1715–1718

    Article  PubMed  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57(46):9347–9377

    Article  CAS  Google Scholar 

  • Champa P, Whangchai N, Jaturonglumlert S, Nakao N, Whangchai K (2016) Determination of phytochemical compound from Spirogyra sp. using ultrasonic assisted extraction. Int J GEOMATE 11(24):2391–2396

    Google Scholar 

  • Chandini SK, Ganesan P, Bhaskar N (2008) In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem 107(2):707–713

    Article  CAS  Google Scholar 

  • Chapman RL (2013) Algae: the world’s most important “plants”—an introduction. Mitig Adapt Strat Glob Chang 18(1):5–12

    Article  Google Scholar 

  • Chiovitti A, Molino P, Crawford SA, Teng R, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur J Phycol 39(2):117–128

    Article  CAS  Google Scholar 

  • Chojnacka K, Saeid A, Witkowska Z, Tuhy Ł (2012) Biologically active compounds in seaweed extracts - the prospects for the application. Open Conf Proc J 3(Suppl 1-M4):20–28

    Article  Google Scholar 

  • Chou NT, Cheng CF, Wu HC, Lai CP, Lin LT, Pan I, Ko CH (2012) Chlorella sorokiniana-induced activation and maturation of human monocyte-derived dendritic cells through NF-κB and PI3K/MAPK pathways. Evid Based Complement Alternat Med 2012:1–12

    Google Scholar 

  • Cunningham S, Joshi L (2010) In: Kole C (ed) Transgenic crop plants. Springer, Berlin, pp 343–357

    Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103(3):891–899

    Article  CAS  Google Scholar 

  • de Souza ET, de Lira DP, de Queiroz AC, da Silva DJ, de Aquino AB, Mella EA, Lorenzo VP, de Miranda GE, de Araújo-Júnior JX, Chaves MC, Barbosa-Filho JM, de Athayde-Filho PF, Santos BV, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7(4):689–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desai SD, Desai DG, Kaur H (2009) Saponins and their biological activities. Pharm Times 41(3):13–16

    Google Scholar 

  • Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae Biomass. Elsevier North Holland Biomedical Press, Amsterdam, pp 51–64

    Google Scholar 

  • Ebrahimzadeh MA, Khalili M, Dehpour AA (2018) Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis-an in vitro assay. Braz J Pharm Sci 54(1)

    Google Scholar 

  • El-Baky HH, El Baz FK, El-Baroty GS (2009) Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr J Biotechnol 8(24):7059–7067

    Google Scholar 

  • Etahiri S, El Kouri A, Butel-Poncé V, Guyot M, Assobhei O (2007) Antibacterial bromophenol from the marine red algae Pterosiphonia complanata. Nat Prod Commun 2(7):749–752

    CAS  Google Scholar 

  • Fasya AG, Baderos A, Madjid ADR, Amalia S, Megawati DS (2019, July) Isolation, identification and bioactivity of steroids compounds from red algae Eucheuma cottonii petroleum ether fraction. AIP Conf Proc 2120(1):030025

    Article  CAS  Google Scholar 

  • Fauzi A, Satriani Lamma MR (2018) Total tannin levels analysis of brown algae (Sargassum sp. and Padina sp.) to prevent blood loss in surgery. J Dentomaxillofacial Sci 3(1):37–40

    Article  Google Scholar 

  • Feroz B (2018) Saponins from marine macroalgae: a review. J Mar Sci Res Dev 8(4). ISSN: 2155-9910

    Google Scholar 

  • Ferraces-Casais P, Lage-Yusty MA, De Quirós ARB, López-Hernández J (2012) Evaluation of bioactive compounds in fresh edible seaweeds. Food Anal Methods 5(4):828–834

    Article  Google Scholar 

  • Freile-Pelegrín Y, Robledo D (2013) Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M (eds) Bioactive compounds from marine foods: plant and animal sources. Wiley, Chichester, pp 113–129

    Chapter  Google Scholar 

  • Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansone C, Albini A, Brunet C (2019) Microalgal derivatives as potential nutraceutical and food supplements for human health: a focus on cancer prevention and interception. Nutrients 11(6):1226

    Article  PubMed Central  CAS  Google Scholar 

  • Garcia-Vaquero M, Rajauria G, O’Doherty J, Torres S (2017) Polysaccharides from macroalgae: recent advances, innovative technologies and challenges in extraction and purification. Food Res Int 99:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Generalić Mekinić I, Skroza D, Šimat V, Hamed I, Čagalj M, Popović Perković Z (2019) Phenolic content of Brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules 9(6):244

    Article  PubMed Central  CAS  Google Scholar 

  • Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, Baart GJE, De Cooman L (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50(3):483–492

    Article  PubMed  CAS  Google Scholar 

  • Gross H, Goeger DE, Hills P, Mooberry SL, Ballantine DL, Murray TF, Valeriote FA, Gerwick WH (2006) Lophocladines, bioactive alkaloids from the red alga Lophocladia sp. J Nat Prod 69(4):640–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guedes AC, Amaro HM, Sousa-Pinto I, Malcata FX (2019) Algal spent biomass—a pool of applications. In: Pandey A (ed) Biofuels from Algae. Elsevier, London, pp 397–433

    Chapter  Google Scholar 

  • Guven KC, Bora A, Sunam G (1969) Alkaloid content of marine algae. I. Hordenine from Phyllophora nervosa. Eczacılık Bul 11:177–184

    CAS  Google Scholar 

  • Guven KC, Bora A, Sunam G (1970) Hordenine from the alga Phyllophora nervosa. Phytochemistry 9:1893

    Article  CAS  Google Scholar 

  • Güven KC, Percot A, Sezik E (2010) Alkaloids in marine algae. Mar Drugs 8(2):269–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Güven K, Coban B, Sezik E, Erdugan H, Kaleağasıoğlu F (2013) Alkaloids of marine macroalgae. In: Ramawat KG, Mérillon J-M (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, pp 25–37

    Chapter  Google Scholar 

  • Harizani M, Ioannou E, Roussis V (2016) The Laurencia paradox: an endless source of chemodiversity. Prog Chem Org Nat Prod 102:91–252

    PubMed  CAS  Google Scholar 

  • Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96(14):1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Hill AF (1952) Economic Botany. A textbook of useful plant and plant Products, 2nd edn. MC-Graw-Hill Book, New York. 743p

    Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Holken Lorensi G, Soares Oliveira R, Leal AP, Zanatta AP, Moreira de Almeida CG, Barreto YC, Batista Pereira A (2019) Entomotoxic activity of Prasiola crispa (Antarctic algae) in Nauphoeta cinerea cockroaches: identification of Main steroidal compounds. Mar Drugs 17(10):573

    Article  PubMed Central  CAS  Google Scholar 

  • Huheihel M, Ishanu V, Tal J, Arad S (2002) Activity of Porphyridium sp. polysaccharide against herpes simplex in vitro and in vivo. J Biochem Biophys Methods 20:189–200

    Article  Google Scholar 

  • Hussein RA, El-Anssary AA (2018) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Herbal medicine. IntechOpen

    Google Scholar 

  • Ibrahim M, Salman M, Kamal S, Rehman S, Razzaq A, Akash SH (2017) Algae-based biologically active compounds. In: Algae based polymers, blends, and composites. Elsevier, pp 155–271

    Google Scholar 

  • Impellizzeri G, Mangiafico S, Oriente G, Piattelli M, Sciuto S, Fattorusso E, Magno S, Santacroce C, Sica D (1975) Amino acids and low-molecular-weight carbohydrates of some marine red algae. Phytochemistry 14(7):1549–1557

    Article  CAS  Google Scholar 

  • Jerez-Martel I, García-Poza S, Rodríguez-Martel G, Rico M, Afonso-Olivares C, Gómez-Pinchetti JL (2017) Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 2017:2924508

    Article  CAS  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart H (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9(2):196–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorgensen EG (1962) Antibiotic substances from cells and culture solutions of unicellular algae with special reference to some chloropbyll derivatives. Plant Physiol 15:530–545

    Article  CAS  Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 61:4667–4675

    Article  PubMed  CAS  Google Scholar 

  • Kang K, Park Y, Hwang HJ, Kim SH, Lee JG, Shin HC (2003) Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharm Res 26(4):286–293

    Article  PubMed  CAS  Google Scholar 

  • Kapetanović R, Sladić DM, Popov S, Zlatović MV, Kljajić Z, Gašić MJ (2005) Sterol composition of the Adriatic Sea algae Ulva lactuca, Codium dichotomum, Cystoseira adriatica and Fucus virsoides. J Serb Chem Soc 70(12):1395–1400

    Article  CAS  Google Scholar 

  • Kazłowska K, Hsu T, Hou C-C, Yang W-C, Tsai G-J (2010) Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J Ethnopharmacol 128(1):123–130

    Article  PubMed  CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kidgell JT, Magnusson M, de Nys R, Glasson CR (2019) Ulvan: a systematic review of extraction, composition and function. Algal Res 39:101422

    Article  Google Scholar 

  • Kneifel H, Meinicke M, Soeder ÇJ (1977) Analysis of amines in algae by high performance liquid chromatography. J Phycol 13:36

    Google Scholar 

  • Knott MG, Mkwananzi H, Arendse CE, Hendricks DT, Bolton JJ, Beukes DR (2005) Plocoralides A–C, polyhalogenated monoterpenes from the marine alga Plocamium corallorhiza. Phytochemistry 66(10):1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and outlook. In: Carbohydrates-comprehensive studies on glycobiology and glycotechnology, IntechOpen

    Google Scholar 

  • Krishnamurti C, Rao SC (2016) The isolation of morphine by Serturner. Indian J Anaesth 60(11):861

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuda T, Ikemori T (2009) Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112(3):575–581

    Article  CAS  Google Scholar 

  • Kuda T, Kunii T, Goto H, Suzuki T, Yano T (2007) Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 103(3):900–905

    Article  CAS  Google Scholar 

  • Kurniawati HA, Ismadji S, Liu JC (2014) Microalgae harvesting by flotation using natural saponin and chitosan. Bioresour Technol 166:429–434

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Shin KH, Kim BK, Lee S (2004) Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res 27(11):1120–1122

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi MS, Prasad MP (2015) Comparitive analysis of phytochemical compounds of marine algae isolated from Gulf of Mannar. World J Pharm Pharm Sci 4(5):640–654

    CAS  Google Scholar 

  • Leonard SG, Sweeney T, Pierce KM, Bahar B, Lynch BP, O’Doherty JV (2010) The effects of supplementing the diet of the sow with seaweed extracts and fish oil on aspects of gastrointestinal health and performance of the weaned piglet. Livest Sci 134:135–138

    Article  Google Scholar 

  • Li K, Li XM, Ji NY, Wang BG (2007) Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg Med Chem 15(21):6627–6631

    Article  PubMed  CAS  Google Scholar 

  • Li YX, Kim SK (2011) Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: an overview. Food Sci Biotechnol 20(6):1461–1466

    Article  CAS  Google Scholar 

  • Li, Y., Qian, Z. J., Le, Q. T., Kim, M. M., & Kim, S. K. (2008). Bioactive phloroglucinoi derivatives isolated from an edible marine brown alga, Eckionia cava. In: 13th International Biotechnology Symposium and Exhibition (第 13 届 IUPAC 国际生物工程会议) (pp. 578-578). 大连理工大学.

    Google Scholar 

  • Li-Beisson, Y., Thelen, J.J., Fedosejevs, E. and Harwood, J.L., 2019. The lipid biochemistry of eukaryotic algae. Prog Lipid Res74:31-68. doi: https://doi.org/10.1016/j.plipres.2019.01.003.

  • Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50(13):3862–3866

    Article  PubMed  CAS  Google Scholar 

  • Lin JL, Liang YQ, Liao XJ, Yang JT, Li DC, Huang YL, Jiang ZH, Xu SH, Zhao BX (2019) Acanthophoraine A, a new pyrrolidine alkaloid from the red alga Acanthophora spicifera. Nat Prod Res 1–6. doi:https://doi.org/10.1080/14786419.2019.1569008

  • Liu DQ, Mao SC, Zhang HY, Yu XQ, Feng MT, Wang B, Feng LH, Guo YW (2013) Racemosins A and B, two novel bisindole alkaloids from the green alga Caulerpa racemosa. Fitoterapia 91:15–20

    Article  PubMed  CAS  Google Scholar 

  • Lopes G, Sousa C, Valentão P, Andrade PB (2013) Sterols in algae and health. In: Hernández-Ledesma B, Herrero M (eds) Bioactive compounds from marine foods: plant and animal sources. Wiley, Chichester, pp 173–191

    Chapter  Google Scholar 

  • López A, Rico M, Santana-Casiano JM, González AG, González-Dávila M (2015) Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res 22(19):14820–14828

    Article  CAS  Google Scholar 

  • Lourenço SO, Barbarino E, De-Paula JC, Pereira LODS, Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol Res 50(3):233–241

    Article  Google Scholar 

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15(2-3):115–119

    Article  Google Scholar 

  • Luo X, Su P, Zhang W (2015) Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs 13(7):4231–4254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machu L, Misurcova L, Vavra Ambrozova J, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20(1):1118–1133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Panikkar MVN (2009) Bio-potentials of seaweeds collected from southwest coast of India. J Mar Sci Technol 17:67–73

    Google Scholar 

  • Mao SC, Guo YW, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg Med Chem Lett 16(11):2947–2950

    Article  PubMed  CAS  Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96(3):631–645

    Article  PubMed  CAS  Google Scholar 

  • Mayer AMS, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous system and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52

    Article  CAS  Google Scholar 

  • Meneses MM, Flores MEJ (2019) Flavonoids: a promising therapy for obesity due to the high-fat diet. In: Flavonoids-a coloring model for cheering up life. IntechOpen

    Google Scholar 

  • Messyasz B, Michalak I, Łęska B, Schroeder G, Górka B, Korzeniowska K, Lipok J, Wieczorek P, Rój E, Wilk R, Dobrzyńska-Inger A, Górecki H, Chojnacka K (2018) Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J Appl Phycol 30(1):591–603

    Article  PubMed  CAS  Google Scholar 

  • Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15(2):160–176

    Article  CAS  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010a) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in eukaryotes. New Phytol 188(1):67–81

    Article  PubMed  CAS  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010b) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188(1):82–97

    Article  PubMed  CAS  Google Scholar 

  • Miller LH, Su X (2011) Artemisinin: discovery from the Chinese herbal garden. Cell 146(6):855–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montero L, del Pilar Sánchez-Camargo A, Ibáñez E, Gilbert-López B (2018) Phenolic compounds from edible algae: bioactivity and health benefits. Curr Med Chem 25(37):4808–4826

    Article  PubMed  CAS  Google Scholar 

  • Montero L, Sánchez-Camargo AP, García-Cañas V, Tanniou A, Stiger-Pouvreau V, Russo M, Rastrelli L, Cifuentes A, Herrero M, Ibáñez E (2016) Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J Chromatogr A 1428:115–125

    Article  PubMed  CAS  Google Scholar 

  • Moore RE, Cheuk C, Yang X, Patterson GML, Bonjouklian R, Smitka TA, Mynderse JS, Foster RS, Jones ND, Swartzendruber JK, Deeter JB (2002) Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis. J Org Chem 52(6):1036–1043

    Article  Google Scholar 

  • Moreau D, Tomasoni C, Jacquot C, Kaas R, Le Guedes R, Cadoret JP, Muller-Feuga A, Kontiza I, Vagias C, Roussis V, Roussakis C (2006) Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environ Toxicol Pharmacol 22(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu A, Kajitani H, Sakakibara J (1995) Muscoride a: a new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Lett 36(23):4097–4100

    Article  CAS  Google Scholar 

  • Neyrinck AM, Mouson A, Delzenne NM (2007) Dietary supplementation with laminarin, a fermentable marine β (1–3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. Int Immunopharmacol 7(12):1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Nguyen THM (2012) Bioethanol production from marine algae biomass: prospect and troubles. J Vietnam Environ 3(1):25–29

    Article  Google Scholar 

  • O’Doherty JV, Dillon S, Figat S, Callan JJ, Sweeney T (2010) The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim Feed Sci Technol 157(3-4):173–180

    Article  CAS  Google Scholar 

  • Omer TA, Attar T (2013) Isolation and identification of some chemical constituents in two different types of fresh water macro-algae in Bestansur Village in Suleiman city Kurdistan region (North Iraq) by HPLC technique. J Appl Chem (IOSR-JAC) 4(3):45–55

    Article  CAS  Google Scholar 

  • Pal A, Kamthania MC, Kumar A (2014) Bioactive compounds and properties of seaweeds—a review. Open Access Libr J 1:1–17

    Google Scholar 

  • Palanisamy SK, Arumugam V, Rajendran S, Ramadoss A, Nachimuthu S, Magesh Peter D, Sundaresan U (2019) Chemical diversity and anti-proliferative activity of marine algae. Nat Prod Res 33(14):2120–2124

    Article  PubMed  CAS  Google Scholar 

  • Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190

    Article  Google Scholar 

  • Papalia T, Sidari R, Panuccio MR (2019) Impact of different storage methods on bioactive compounds in Arthrospira platensis biomass. Molecules 24(15):2810

    Article  PubMed Central  Google Scholar 

  • Percot A, Güven KC, Aysel V, Erduğan H, Gezgin T (2009a) N-acetyltyramine from phyllophora crispa (Hudson) ps Dixon and n-acetylphenylethylamine from Gelidium crinale (hare ex turner) craillon. Acta Pharm Sci 51(1)

    Google Scholar 

  • Percot A, Yalçın A, Aysel V, Erdugan H, Dural B, Güven KC (2009b) β-Phenylethylamine content in marine algae around Turkish coasts. Bot Mar 52(1):87–90

    Article  Google Scholar 

  • Pereira HS, Leão-Ferreira LR, Moussatché N, Teixeira VL, Cavalcanti DN, Costa LJ, Diaz R, Frugulhetti IC (2004) Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antiviral Res 64(1):69–76

    PubMed  CAS  Google Scholar 

  • Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89

    PubMed  PubMed Central  CAS  Google Scholar 

  • Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19(1):31–39

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  PubMed  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  PubMed  CAS  Google Scholar 

  • Ramdani M, Image P, Elasri O, Image P, Saidi N, Image P, Elkhiati N, Image P, Taybi AF, Image P, Mostareh M, Image P, Zaraali O, Image P, Haloui B, Image P, Ramdani M (2017) Evaluation of antioxidant activity and total phenol content of Gracilaria bursa-pastoris harvested in Nador lagoon for an enhanced economic valorization. Chem Biol Technol Agric 4(1):28

    Article  CAS  Google Scholar 

  • Rangel-Yagui CO, Godoy-Danesi ED, Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92:114–133

    Article  CAS  Google Scholar 

  • Raposo de Jesus MF, de Morais RMSC, de Morais AMMB (2013a) Health applications of bioactive compounds from marine microalgae. Life Sci 93(15):479–486

    Google Scholar 

  • Raposo de Jesus MF, de Morais RMSC, de Morais AMMB (2013b) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252

    Google Scholar 

  • Rasmussen HE, Blobaum KR, Jesch ED, Ku CS, Park YK, Lu F, Carr TP, Lee JY (2009) Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kützing, an edible blue-green alga. Eur J Nutr 48(7):387–394

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Urban S (2009) Meroditerpenoids from the southern Australian marine brown alga Sargassum fallax. Phytochemistry 70(2):250–255

    Article  PubMed  CAS  Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka A, Borowitzka L (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 83–121

    Google Scholar 

  • Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Smith GD (1999) Calothrixins a and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55(47):13513–13520

    Article  CAS  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537

    Article  CAS  Google Scholar 

  • Rolle I, Hobucher HE, Kneifel H, Paschold B, Riepe W, Soeder CJ (1977) Amines in unicellular green algae: 2. Amines in Scenedesmus acutus. Anal Biochem 77(1):103–109

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (1978) β-Phenylethylamine: is this biogenic amine related to neuropsychiatic disease. Mod Pharmacol Toxicology 12:139–157

    CAS  Google Scholar 

  • Sabina H, Aliya R (2009) Seaweed as a new source of flavone, scutellarein 4′-methyl-ether. Pak J Bot 41(4):1927–1930

    CAS  Google Scholar 

  • Sallehudin NJ, Raus RA, Mustapa M, Othman R, Mel M (2018) Screening of lutein content in several fresh-water microalgae. Int Food Res J 25(6)

    Google Scholar 

  • Sampath-Wiley P, Neefus CD, Jahnke LS (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361(2):83–91

    Article  CAS  Google Scholar 

  • Santoyo S, Plaza M, Jaime L, Ibanez E, Reglero G, Senorans J (2011) Pressurized liquids as an alternative green process to extract antiviral agents from the edible seaweed Himanthalia elongata. J Appl Phycol 23:909–917

    Article  CAS  Google Scholar 

  • Saravana PS, Cho YJ, Park YB, Woo HC (2016) Structural, antioxidants and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr Polym 153:518–525

    Article  PubMed  CAS  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Servaites JC, Faeth JL, Sidhu SS (2012) A dye binding method for measurement of total protein in microalgae. Anal Biochem 421(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Shan X, Liu X, Hao J, Cai C, Fan F, Dun Y, Zhao X, Liu X, Li C, Yu G (2016) In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int J Biol Macromol 82:249–255

    Article  PubMed  CAS  Google Scholar 

  • Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14(4):81

    Article  PubMed Central  CAS  Google Scholar 

  • Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. Technikfol Theorie Praxis 21:2337

    Google Scholar 

  • Shoubaky GA, Salem EA (2014) Terpenes and sterols composition of marine brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales). Int J Pharmacogn Phytochem Res 6(4):894–900

    Google Scholar 

  • Shoubaky GAE, Abdel-Daim MM, Mansour MH, Salem EA (2016) Isolation and identification of a flavone apigenin from marine red alga Acanthophora spicifera with antinociceptive and anti-inflammatory activities. J Exp Neurosci 10:JEN-S25096

    Article  Google Scholar 

  • Shushizadeh MR (2019) Gas chromatography-mass evaluation of Terpenoids from Persian gulf Padina tetrastromatica sp. Asian J Pharm (AJP) 12(04)

    Google Scholar 

  • Singh IP, Sidana J (2013) Phlorotannins. In: Functional ingredients from algae for foods and nutraceuticals. Woodhead, pp 181–204

    Google Scholar 

  • Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun BS (2015) Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar Drugs 13:3422–3442

    Article  PubMed  CAS  Google Scholar 

  • Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A (2005) Batch and fedbatch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243:217–224

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J Appl Phycol 20:225–245

    Article  CAS  Google Scholar 

  • Song MY, Ku SK, Han JS (2012) Genotoxicity testing of low molecular weight fucoidan from brown seaweeds. Food Chem Toxicol 50(3-4):790–796

    Article  PubMed  CAS  Google Scholar 

  • Soong P (1980) Production and development of chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam, pp 97–113

    Google Scholar 

  • Souza BWS, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll 27(2):287–292

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  PubMed  CAS  Google Scholar 

  • Stabili L, Acquaviva MI, Biandolino F, Cavallo RA, De Pascali SA, Fanizzi FP, Narracci M, Cecere E, Petrocelli A (2014) Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract. N Biotechnol 31(5):436–444

    Article  PubMed  CAS  Google Scholar 

  • Steiner M, Hartmann T (1968) Über Vorkommen und Verbreitung flüchtiger Amine bei Meeresalgen. Planta 79(2):113–121

    Article  PubMed  CAS  Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29(5):483–501

    Article  PubMed  CAS  Google Scholar 

  • Stiger-Pouvreau V, Bourgougnon N, Deslandes E (2016) Carbohydrates from seaweeds. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Academic, London, pp 223–274

    Chapter  Google Scholar 

  • Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.04.287

  • Sumayya, S. S., & Murugan, K. (2019). Antioxidant potentialities of marine red algae Gracillaria dura: a search.

    Google Scholar 

  • Synytsya A, Kim W-J, Kim S-M, Pohl R, Synytsya A, Kvasnicka F, Copíková J, Park YI (2010) Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 81(1):41–48

    Article  CAS  Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–344

    Article  CAS  Google Scholar 

  • Templeton DW, Laurens LM (2015) Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel. Algal Res 11:359–367

    Article  Google Scholar 

  • Tringali C (1997) Bioactive metabolites from marine algae: recent results. Curr Org Chem 1:375–394

    CAS  Google Scholar 

  • United States Environmental Protection Agency (EPA) (2014) 2014 Toxics release inventory national analysis complete report. https://www.epa.gov/toxics-release-inventory-tri-program/2014-trinational-analysis-complete-report. Accessed 4 Sept 2017

  • Villarruel-López A, Ascencio F, Nuño K (2017) Microalgae, a potential natural functional food source—a review. Polish J Food Nutr Sci 67(4):251–264

    Article  Google Scholar 

  • Volk RB (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17(4):339–347

    Article  CAS  Google Scholar 

  • Waghmode AV, Khilare CJ (2018) RP-HPLC profile of major phenolics from brown marine macro algae. J Appl Pharm 10(262):2

    Google Scholar 

  • Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med 232(10):1266–1274

    Article  CAS  Google Scholar 

  • Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, Xiao Y, Jin M, Yang N, Liu H, Florian A, Li W, Pan Q, Nikoloski Z, Yan J, Fernie AR (2015) Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. Plant Cell 27(7):1839–1856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  PubMed  CAS  Google Scholar 

  • Ye H, Wang K, Zhou C, Liu J, Zeng X (2008) Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 111:428–432

    Article  PubMed  CAS  Google Scholar 

  • Zolotareva EK, Mokrosnop VM, Stepanov SS (2019) Polyphenol compounds of macroscopic and microscopic algae. Int J Algae 21(1)

    Google Scholar 

  • Zou Y, Qian ZJ, Li Y, Kim MM, Lee SH, Kim SK (2008) Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. J Agric Food Chem 56(16):7001–7009

    Article  PubMed  CAS  Google Scholar 

  • Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20(6):1033–1043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidhyanandan, L.M., Kumar, S.M., Sukumaran, S.T. (2020). Algal Metabolites and Phyco-Medicine. In: Sukumaran, S.T., Sugathan, S., Abdulhameed, S. (eds) Plant Metabolites: Methods, Applications and Prospects. Springer, Singapore. https://doi.org/10.1007/978-981-15-5136-9_13

Download citation

Publish with us

Policies and ethics