Skip to main content

Therapeutic Implication of Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies

Abstract

Most of the conventional cancer treatments have limited selectivity, are temporarily effective, and have adverse side effects. The potential of cancer stem cell (CSC)-based therapies has recently attracted much attention to override the detrimental impact of conventional therapies. Here we have highlighted potential strategies including identification of cancer stem cell biomarkers, interfering with circuitry network associated with drug resistance, sensitization of CSC to chemotherapy, and radiation therapy through protein targeting. CSCs display differential metabolic activity, specific signaling pathway activity in tumor initiation, metastasis, and drug resistance. Thus identification of CSC-specific markers distinct from the total cancer cell population is essential. Given the fact that the stem cell is one of the key components of organogenesis and maintenance of homeostasis throughout life, improvement of treatment modalities based on CSC therapies holds wish for better overall survival and better quality of life of cancer sufferers, specifically for patients with metastatic disorder. Therefore, in this book chapter, we have mainly discussed aberrant regulation of gene expression and some signaling pathways in CSCs and implication of CSC surface markers for designing new therapies for better clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  2. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kangsamaksin T, Park HJ, Trempus CS, Morris RJ (2007) A perspective on murine keratinocyte stem cells as targets of chemically induced skin cancer. Mol Carcinog 46:579–584

    CAS  PubMed  Google Scholar 

  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988

    CAS  PubMed  Google Scholar 

  5. Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R (2009) Colon cancer stem cells. J Mol Med 87:1097

    PubMed  Google Scholar 

  6. Minteer D, Marra KG, Rubin JP (2012) Adipose-derived mesenchymal stem cells: biology and potential applications. Mesenchymal stem cells-basics and clinical application I. Springer, Berlin

    Google Scholar 

  7. Yeung TM, Chia LA, Kosinski CM, Kuo CJ (2011) Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci 68:2513–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    CAS  PubMed  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    CAS  PubMed  Google Scholar 

  10. Guo Y, Lübbert M, Engelhardt M (2003) CD34− hematopoietic stem cells: current concepts and controversies. Stem Cells 21:15–20

    CAS  PubMed  Google Scholar 

  11. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    CAS  PubMed  Google Scholar 

  12. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, Van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086

    CAS  PubMed  Google Scholar 

  13. Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Muñoz P (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524

    PubMed  Google Scholar 

  14. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M, Herrmann I, Ristimäki A, Virkkunen P, Tarkkanen M (2008) Tissue-specific promoters active in CD44+ CD24−/low breast cancer cells. Cancer Res 68:5533–5539

    CAS  PubMed  Google Scholar 

  15. Dierks C, Beigi R, Guo G-R, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on hedgehog pathway activation. Cancer Cell 14:238–249

    CAS  PubMed  Google Scholar 

  16. Winquist RJ, Boucher DM, Wood M, Furey BF (2009) Targeting cancer stem cells for more effective therapies: taking out cancer’s locomotive engine. Biochem Pharmacol 78:326–334

    CAS  PubMed  Google Scholar 

  17. Maugeri-Saccà M, Zeuner A, De Maria R (2011) Therapeutic targeting of cancer stem cells. Front Oncol 1:10

    PubMed  PubMed Central  Google Scholar 

  18. Merchant AA, Matsui W (2010) Targeting Hedgehog—a cancer stem cell pathway. Clin Cancer Res 16:3130–3140

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller J-M, Chevrier L, Cochaud S, Meunier A-C, Chadeneau C (2007) Hedgehog, Notch and Wnt developmental pathways as targets for anti-cancer drugs. Drug Discov Today Dis Mech 4:285–291

    Google Scholar 

  20. Liu J, Kopeckova P, Bühler P, Wolf P, Pan H, Bauer H, Elsässer-Beile U, Kopecek J (2009) Biorecognition and subcellular trafficking of HPMA copolymer− anti-PSMA antibody conjugates by prostate Cancer cells. Mol Pharm 6:959–970

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang K-H, Kao A-P, Chang C-C, Lee J-N, Hou M-F, Long C-Y, Chen H-S, Tsai E-M (2010) Increasing CD44+/CD24-tumor stem cells, and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Mol Cancer 9:288

    PubMed  PubMed Central  Google Scholar 

  22. Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199

    CAS  PubMed  Google Scholar 

  24. Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDH hi CD44+ human breast cancer cells. Breast Cancer Res Treat 133:75–87

    CAS  PubMed  Google Scholar 

  25. Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    CAS  PubMed  Google Scholar 

  26. Saeki T, Nomizu T, Toi M, Ito Y, Noguchi S, Kobayashi T, Asaga T, Minami H, Yamamoto N, Aogi K (2007) Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol 25:411–417

    CAS  PubMed  Google Scholar 

  27. Konopleva M, Tabe Y, Zeng Z, Andreeff M (2009) Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 12:103–113

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaboli PJ, Rahmat A, Ismail P, Ling K-H (2015) MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 97:104–121

    CAS  PubMed  Google Scholar 

  29. Garofalo M, Croce CM (2015) Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev 81:53–61

    CAS  PubMed  Google Scholar 

  30. Ween M, Armstrong M, Oehler M, Ricciardelli C (2015) The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 96:220–256

    CAS  PubMed  Google Scholar 

  31. Rauf A, Imran M, Orhan IE, Bawazeer S (2018) Health perspectives of a bioactive compound curcumin: a review. Trends Food Sci Technol 74:33–45

    CAS  Google Scholar 

  32. Chandrasekaran S, Marshall JR, Messing JA, Hsu J-W, King MR (2014) TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS One 9:e111487

    PubMed  PubMed Central  Google Scholar 

  33. Roberti A, Sala DL, Cinti C (2006) Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J Cell Physiol 207:571–581

    CAS  PubMed  Google Scholar 

  34. Suresh R, Ali S, Ahmad A, Philip PA, Sarkar FH (2016) The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv Exp Med Biol 890:57–74

    PubMed  Google Scholar 

  35. Ning X, Shu J, Du Y, Ben Q, Li Z (2013) Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther 14:295–303

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pont LMB, Spoor JK, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CM, van der Spek PJ, Lamfers ML, Leenstra S (2014) The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 5:445

    CAS  Google Scholar 

  37. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    PubMed  Google Scholar 

  38. Dick JE (2005) Acute myeloid leukemia stem cells. Ann N Y Acad Sci 1044:1–5

    PubMed  Google Scholar 

  39. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE (2004) Concepts of human leukemic development. Oncogene 23:7164–7177

    CAS  PubMed  Google Scholar 

  40. Johnsen HE, Kjeldsen MK, Urup T, Fogd K, Pilgaard L, Boegsted M, Nyegaard M, Christiansen I, Bukh A, Dybkaer K (2009) Cancer stem cells and the cellular hierarchy in haematological malignancies. Eur J Cancer 45(Suppl 1):194–201

    PubMed  Google Scholar 

  41. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89:3104–3112

    CAS  PubMed  Google Scholar 

  42. Blair A, Sutherland HJ (2000) Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28:660–671

    CAS  PubMed  Google Scholar 

  43. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M (2008) Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med 14:450–460

    CAS  PubMed  Google Scholar 

  44. Prud’Homme GJ (2012) Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 18:2838–2849

    PubMed  Google Scholar 

  45. Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, Friedman C, Harlan L, Warren J, Anderson RN, PICKLE LW (2005) Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 97:1407–1427

    PubMed  Google Scholar 

  46. Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26:2806–2812

    PubMed  Google Scholar 

  47. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    CAS  PubMed  Google Scholar 

  48. Eramo A, Haas TL, De Maria R (2010) Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene 29:4625–4635

    CAS  PubMed  Google Scholar 

  49. Wu X, Chen H, Wang X (2012) Can lung cancer stem cells be targeted for therapies? Cancer Treat Rev 38:580–588

    PubMed  Google Scholar 

  50. de Beça FF et al (2013) Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 66(3):187–191

    PubMed  Google Scholar 

  51. Yasuda H et al (2009) Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep 22(4):709–717

    CAS  PubMed  Google Scholar 

  52. Brescia P et al (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869

    CAS  PubMed  Google Scholar 

  53. Prince M et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci 104(3):973–978

    CAS  PubMed  Google Scholar 

  54. Simeone DM (2008) Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 14(18):5646–5648

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeep Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, S., Khurana, S., Philip, S.A. (2020). Therapeutic Implication of Cancer Stem Cells. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_9

Download citation

Publish with us

Policies and ethics