Skip to main content

Lung and Prostate Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies
  • 538 Accesses

Abstract

The most prominent cause of deaths due to cancer is lung cancer that typically includes the failure of treatment, reoccurrence of cancer, and dispersion that is only possible due to the existence of cancer stem cells (CSCs). The current development in translational and molecular investigation on lung cancer postulates the unique data and detailed comprehension of lung cancer biology and various treatment approaches. Targeting lung CSCs with detailed focus on specific markers of lung CSCs may give a conception to eliminate lung cancer without reoccurrence and may finally improve long-lasting clinical outcome. Prostate cancer (PCa) is the most prevalent type of cancer and the major cause of mortality in males around the globe. It is a heterogenous condition attributed to instability of genome and mechanisms related to epigenetics resulting in cellular differentiation. The previous decade has seen evidences that have clearly revealed the critical role of PCa stem cells (PCSCs) in PCa. Metastasis, till date, remains a big challenge in the treatment of these cancer types due to limited survival advantage of the second-generation drugs as observed in sufferers. Molecular mechanisms reveal that mutations in tumor suppressors together with oncogenic activation are capable of inducing a major mechanism termed as partial epithelial–mesenchymal transition (EMT), which provides plasticity to cancer stem cells (CSCs) and eventually contributes to metastasis. Thus, a clearer understanding of fundamental stem cell mechanisms pointing toward the various signaling pathways that regulate the fate of cell during development is crucial to improve stem cell-based regenerative medicine and anticancer strategies for both PCa and lung cancer.

In this chapter, we encapsulate our present understanding of normal stem/progenitor cells of prostate and lung cancer that highlight the recent progress that has been made on CSCs and discuss the properties and hallmarks of biology of prostate and lung CSCs and their involvement in resistance to therapy, tumor progression, and metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Zakaria N, Satar NA, Halim A, Hanis N, Ngalim SH, Yusoff NM, Lin J, Yahaya BH (2017) Targeting lung cancer stem cells: research and clinical impacts. Front Oncol 7:80

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  4. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24(18):1967–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50

    Article  CAS  PubMed  Google Scholar 

  6. Ross JS (2007) The androgen receptor in prostate cancer: therapy target in search of an integrated diagnostic test. Adv Anat Pathol 14(5):353–357

    Article  CAS  PubMed  Google Scholar 

  7. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, Lin K, Huang J, Ivanov I, Li W, Suraneni MV, Tang DG (2012) The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10(5):556–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koren E, Fuchs Y (2016) The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 28:1–12

    Article  PubMed  Google Scholar 

  9. Heppner GH, Miller BE (1983) Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev 2(1):5–23

    Article  CAS  PubMed  Google Scholar 

  10. Dethlefsen L (1980) The growth dynamics of murine mammary tumor cells in situ. In: Cell biology of breast cancer. Academic, New York, pp 145–160

    Google Scholar 

  11. Giangreco A, Groot KR, Janes SM (2007) Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175(6):547–553

    Article  PubMed  Google Scholar 

  12. Lee DK, Liu Y, Liao L, Wang F, Xu J (2014) The prostate basal cell (BC) heterogeneity and the p63-positive BC differentiation spectrum in mice. Int J Biol Sci 10(9):1007–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198(3):281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 105(52):20882–20887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trerotola M, Rathore S, Goel HL, Li J, Alberti S, Piantelli M, Adams D, Jiang Z, Languino LR (2010) CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2(2):135–144

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263):495–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor RA, Toivanen R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate Cancer Bioresource, Collins AT, Maitland NJ, Risbridger GP (2012) Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells 30(6):1087–1096

    Article  CAS  PubMed  Google Scholar 

  18. Bu Y, Cao D (2012) The origin of cancer stem cells. Front Biosci (Schol Ed) 4:819–830

    Google Scholar 

  19. Dittmar T, Nagler C, Niggemann B, Zanker K (2013) The dark side of stem cells: triggering cancer progression by cell fusion. Curr Mol Med 13(5):735–750

    Article  CAS  PubMed  Google Scholar 

  20. Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331):1330–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014:921905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grandics P (2006) The cancer stem cell: evidence for its origin as an injured autoreactive T cell. Mol Cancer 5(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8(2):136–147

    Article  CAS  PubMed  Google Scholar 

  25. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y-C, Hsu H-S, Chen Y-W, Tsai T-H, How C-K, Wang C-Y, Hung S-C, Chang Y-L, Tsai M-L, Lee Y-Y (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3(7):e2637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yan X, Luo H, Zhou X, Zhu B, Wang Y, Bian X (2013) Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep 30(6):2733–2740

    Article  CAS  PubMed  Google Scholar 

  28. Schlagenhauff B, Stroebel W, Ellwanger U, Meier F, Zimmermann C, Breuninger H, Rassner G, Garbe C (1997) Metastatic melanoma of unknown primary origin shows prognostic similarities to regional metastatic melanoma: recommendations for initial staging examinations. Cancer 80(1):60–65

    Article  CAS  PubMed  Google Scholar 

  29. Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST (2008) Deletion of the WNT target and cancer stem cell marker CD44 in Apc (Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 68(10):3655–3661

    Article  CAS  PubMed  Google Scholar 

  30. Leung EL-H, Fiscus RR, Tung JW, Tin VP-C, Cheng LC, Sihoe AD-L, Fink LM, Ma Y, Wong MP (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5(11):e14062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272

    Article  CAS  PubMed  Google Scholar 

  32. Guler G, Guven U, Oktem G (2019) Characterization of CD133(+)/CD44(+) human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 144(6):2138–2149

    Article  CAS  PubMed  Google Scholar 

  33. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer research 65(23):10946–10951

    Article  CAS  PubMed  Google Scholar 

  34. Mateo F, Meca-Cortes O, Celia-Terrassa T, Fernandez Y, Abasolo I, Sanchez-Cid L, Bermudo R, Sagasta A, Rodriguez-Carunchio L, Pons M, Canovas V, Marin-Aguilera M, Mengual L, Alcaraz A, Schwartz S Jr, Mellado B, Aguilera KY, Brekken R, Fernandez PL, Paciucci R, Thomson TM (2014) SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer 13:237

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abe Y, Tanaka N (2016) The hedgehog signaling networks in lung cancer: the mechanisms and roles in tumor progression and implications for cancer therapy. Biomed Res Int 2016:7969286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ng JM, Curran T (2011) The Hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer 11(7):493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quijada L, Callejo A, Torroja C, Guerrero I (2007) The patched receptor: switching on/off the Hedgehog signaling pathway. In: Hedgehog-Gli signalling human diseases. Landes Bioscience, Austin, TX, p 23

    Google Scholar 

  38. He B, Barg RN, You L, Xu Z, Reguart N, Mikami I, Batra S, Rosell R, Jablons DM (2005) Wnt signaling in stem cells and non–small-cell lung cancer. Clin Lung Cancer 7(1):54–60

    Article  CAS  PubMed  Google Scholar 

  39. Alketbi A, Attoub S (2015) Notch signaling in cancer: rationale and strategies for targeting. Curr Cancer Drug Targets 15(5):364–374

    Article  CAS  PubMed  Google Scholar 

  40. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162

    Article  PubMed  CAS  Google Scholar 

  42. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9(16):3256–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, Maitland NJ, Collins AT (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9(5):R83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pertega-Gomes N, Felisbino S, Massie CE, Vizcaino JR, Coelho R, Sandi C, Simoes-Sousa S, Jurmeister S, Ramos-Montoya A, Asim M, Tran M, Oliveira E, Lobo da Cunha A, Maximo V, Baltazar F, Neal DE, Fryer LG (2015) A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol 236(4):517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE (2014) Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene 33(45):5251–5261

    Article  CAS  PubMed  Google Scholar 

  46. Hopkins JF, Sabelnykova VY, Weischenfeldt J, Simon R, Aguiar JA, Alkallas R, Heisler LE, Zhang J, Watson JD, Chua MLK, Fraser M, Favero F, Lawerenz C, Plass C, Sauter G, McPherson JD, van der Kwast T, Korbel J, Schlomm T, Bristow RG, Boutros PC (2017) Mitochondrial mutations drive prostate cancer aggression. Nat Commun 8(1):656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu R, Liu C, Zhang D, Liu B, Chen X, Rycaj K, Jeter C, Calhoun-Davis T, Li Y, Yang T, Wang J, Tang DG (2016) miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget 7(35):56628–56642

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166(1):21–45

    Article  CAS  PubMed  Google Scholar 

  50. Montanari M, Rossetti S, Cavaliere C, D’Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E, Iovane G, Piscitelli R, Muscariello R, Berretta M, Perdona S, Muto P, Botti G, Bianchi AAM, Veneziani BM, Facchini G (2017) Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 8(21):35376–35389

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vela I, Gregory L, Gardiner EM, Clements JA, Nicol DL (2007) Bone and prostate cancer cell interactions in metastatic prostate cancer. BJU Int 99(4):735–742

    Article  CAS  PubMed  Google Scholar 

  52. Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28

    Article  CAS  PubMed  Google Scholar 

  53. Debes JD, Tindall DJ (2004) Mechanisms of androgen-refractory prostate cancer. N Engl J Med 351(15):1488–1490

    Article  CAS  PubMed  Google Scholar 

  54. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, Settleman J, Johnson L (2012) Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 72(2):527–536

    Article  CAS  PubMed  Google Scholar 

  55. Mercer BA, Lemaître V, Powell CA, D’Armiento J (2006) The epithelial cell in lung health and emphysema pathogenesis. Curr Resp Med Rev 2(2):101–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeep Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, S., Sain, V., Khurana, S., Gupta, R. (2020). Lung and Prostate Cancer Stem Cells. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_4

Download citation

Publish with us

Policies and ethics