Skip to main content

Targeting Therapies for Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies

Abstract

Cancer stem cells (CSCs) represent a small subpopulation of the bulk of a tumor. The CSCs possess the characteristics of self-renewal, clonal repopulation and resistance to conventional therapies, and thereby contribute to cancer metastasis and relapse. Moreover, CSCs establish homeostasis under stress via autophagy, endoplasmic reticulum (ER)-stress-mediated unfolded protein response (UPR) pathways, and mitophagy. Recent evidence indicate that besides many protein molecules, the noncoding RNAs (ncRNAs) also play a significant role in CSC growth and maintenance, as well as in cancer metastasis and therapeutic resistance. Therefore, targeting the CSCs has evolved as an important strategy for cancer therapy. Recent advancements in cancer immunotherapy has shown excellent application of its potential in targeting CSCs. Various immunotherapy approaches like immune checkpoint inhibitors, dendritic cell (DC)-based vaccines, adoptive T-cell therapy, oncolytic viruses, and combination therapies are currently used to target the CSCs. Also, recent multi-omic technologies can divulge exclusive CSC-associated cell surface markers, which can be used in detection or therapeutics of CSCs for various cancers. Additionally, detection of CSC-specific neoantigens can help in the design of new immunotherapeutics for cancers. Available literature suggests that many types of cancers have CSCs located in anatomically distinct niches within the tumor microenvironment (TME), which help in CSC’s survival and maintenance. Unique pro-survival and anti-survival intercellular and intracellular cross talk also exists among the CSCs, its niche and/or TME. Modulating unique CSC-niche/TME interaction(s) can reduce the maintenance potential of CSCs, and thereby prevent tumor development and progression or cancer metastasis. Many important cell signaling pathways play a key role in the maintenance and regulation of CSCs. Several new potential therapeutic molecules that could specifically target the CSCs or their signaling pathways to overcome cancer metastasis, treatment-resistance or relapse, are being developed. Furthermore, the emerging clinical studies strongly support the use of drugs as a monotherapy or in combination with other available standard therapies. This chapter highlights the roles of various critical CSC markers and pathways in or around the CSCs, and the several CSC-targeting approaches or therapies that are used or being developed to treat cancer for a cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    Article  CAS  Google Scholar 

  2. Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108(3):479–485

    Article  CAS  Google Scholar 

  3. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1(8):661–673

    Article  CAS  Google Scholar 

  4. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  Google Scholar 

  5. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6(19):2332–2338

    Article  CAS  Google Scholar 

  6. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018:5416923

    Article  Google Scholar 

  7. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD (2019) Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24(1):25–40

    Article  CAS  Google Scholar 

  8. Shibata M, Hoque MO (2019) Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers (Basel) 11(5):172

    Article  Google Scholar 

  9. Sun HR, Wang S, Yan SC, Zhang Y, Nelson PJ, Jia HL, Qin LX, Dong QZ (2019) Therapeutic strategies targeting cancer stem cells and their microenvironment. Front Oncol 9:1104

    Article  Google Scholar 

  10. Amaravadi RK, Kimmelman AC, Debnath J (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 9(9):1167–1181

    Article  CAS  Google Scholar 

  11. Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupre E, Paolini L, Beauvillain C, Dupel E, Latouche JB, Adotevi O, Labarriere N, Lang F (2019) Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Onco Targets Ther 8(4):e1560919

    Google Scholar 

  12. Fessler E, Dijkgraaf FE, Felipe De Sousa EM, Medema JP (2013) Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett 341(1):97–104

    Google Scholar 

  13. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76

    Google Scholar 

  14. Badrinath N, Yoo SY (2019) Recent advances in cancer stem cell-targeted immunotherapy. Cancers (Basel) 11(3):310

    Google Scholar 

  15. Capp JP (2019) Cancer stem cells: from historical roots to a new perspective. J Oncol 2019:5189232

    Google Scholar 

  16. Riha R, Gupta-Saraf P, Bhanja P, Badkul S, Saha S (2017) Stressed out – therapeutic implications of ER stress related cancer research. Onco Targets Ther 2:156–167

    Google Scholar 

  17. Corazzari M, Gagliardi M, Fimia GM, Piacentini M (2017) Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol 7:78

    Google Scholar 

  18. Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK (2019) Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 219:S1044-579X(19)30394-3

    Google Scholar 

  19. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466(7302):68–76

    Google Scholar 

  20. Krebs J, Agellon LB, Michalak M (2015) Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun 460(1):114–121

    Google Scholar 

  21. Fujimoto A, Kawana K, Taguchi A, Adachi K, Sato M, Nakamura H, Ogishima J, Yoshida M, Inoue T, Nishida H, Tomio K, Yamashita A, Matsumoto Y, Arimoto T, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T (2016) Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis. Oncotarget 7(32):51854–51864

    Google Scholar 

  22. Sharif T, Martell E, Dai C, Kennedy BE, Murphy P, Clements DR, Kim Y, Lee PW, Gujar SA (2017) Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy 13(2):264–284

    Google Scholar 

  23. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5(4):e10240

    Google Scholar 

  24. Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, Delbos L, Gary-Gouy H, Morel AP, Ghavami S, Song E, Codogno P, Mehrpour M (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32(18):2261–2272

    Google Scholar 

  25. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Vellon L, Menendez JA (2011) Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype. Cell Cycle 10(22):3871–3885

    Google Scholar 

  26. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644

    Google Scholar 

  27. Wolf J, Dewi DL, Fredebohm J, Muller-Decker K, Flechtenmacher C, Hoheisel JD, Boettcher M (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6):R109

    Google Scholar 

  28. Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL, Thorburn A (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74(9):2579–2590

    Google Scholar 

  29. Yeo SK, Wen J, Chen S, Guan JL (2016) Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfbeta/Smad signaling. Cancer Res 76(11):3397–3410

    Google Scholar 

  30. Yeo SK, Guan JL (2016) Hierarchical heterogeneity in mammary tumors and its regulation by autophagy. Autophagy 12(10):1960–1961

    Google Scholar 

  31. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 108(19):7950–7955

    Google Scholar 

  32. May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA (2011) Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 13(1):202

    Google Scholar 

  33. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, Weinberg RA (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525(7568):256–260

    Google Scholar 

  34. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69(23):8844–8852

    Google Scholar 

  35. Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y, Song Z, Zheng Q, Xiong J (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34(6):1343–1351

    Google Scholar 

  36. Zhu H, Wang D, Liu Y, Su Z, Zhang L, Chen F, Zhou Y, Wu Y, Yu M, Zhang Z, Shao G (2013) Role of the hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int 13(1):119

    Google Scholar 

  37. Song YJ, Zhang SS, Guo XL, Sun K, Han ZP, Li R, Zhao QD, Deng WJ, Xie XQ, Zhang JW, Wu MC, Wei LX (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339(1):70–81

    Google Scholar 

  38. Ojha R, Singh SK, Bhattacharyya S (2016) JAK-mediated autophagy regulates stemness and cell survival in cisplatin resistant bladder cancer cells. Biochim Biophys Acta 1860(11 Pt A):2484–2497

    Google Scholar 

  39. Roy BC, Ahmed I, Ramalingam S, Jala V, Haribabu B, Ramamoorthy P, Ashcraft J, Valentino J, Anant S, Sampath V, Umar S (2019) Co-localization of autophagy-related protein p62 with cancer stem cell marker dclk1 may hamper dclk1’s elimination during colon cancer development and progression. Oncotarget 10(24):2340–2354

    Google Scholar 

  40. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirro E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119(5):1109–1123

    Google Scholar 

  41. Buccarelli M, Marconi M, Pacioni S, De Pascalis I, D'Alessandris QG, Martini M, Ascione B, Malorni W, Larocca LM, Pallini R, Ricci-Vitiani L, Matarrese P (2018) Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis. Cell Death Dis 9(8):841

    Google Scholar 

  42. Hasmim M, Janji B, Khaled M, Noman MZ, Louache F, Bordereaux D, Abderamane A, Baud V, Mami-Chouaib F, Chouaib S (2017) Cutting edge: NANOG activates autophagy under hypoxic stress by binding to BNIP3L promoter. J Immunol 198(4):1423–1428

    Google Scholar 

  43. Perez-Hernandez M, Arias A, Martinez-Garcia D, Perez-Tomas R, Quesada R, Soto-Cerrato V (2019) Targeting autophagy for cancer treatment and tumor chemosensitization. Cancers (Basel) 11(10):1599

    Google Scholar 

  44. Bedoya V (1970) Effect of chloroquine on malignant lymphoreticular and pigmented cells in vitro. Cancer Res 30(5):1262–1275

    Google Scholar 

  45. Amaravadi RK, Winkler JD (2012) Lys05: a new lysosomal autophagy inhibitor. Autophagy 8(9):1383–1384

    Google Scholar 

  46. Cechakova L, Ondrej M, Pavlik V, Jost P, Cizkova D, Bezrouk A, Pejchal J, Amaravadi RK, Winkler JD, Tichy A (2019) A potent autophagy inhibitor (Lys05) enhances the impact of ionizing radiation on human lung cancer cells H1299. Int J Mol Sci 20(23):5881

    Google Scholar 

  47. Rebecca VW, Nicastri MC, McLaughlin N, Fennelly C, McAfee Q, Ronghe A, Nofal M, Lim CY, Witze E, Chude CI, Zhang G, Alicea GM, Piao S, Murugan S, Ojha R, Levi SM, Wei Z, Barber-Rotenberg JS, Murphy ME, Mills GB, Lu Y, Rabinowitz J, Marmorstein R, Liu Q, Liu S, Xu X, Herlyn M, Zoncu R, Brady DC, Speicher DW, Winkler JD, Amaravadi RK (2017) A unified approach to targeting the lysosome’s degradative and growth signaling roles. Cancer Discov 7(11):1266–1283

    Google Scholar 

  48. Cannon MJ, Block MS, Morehead LC, Knutson KL (2019) The evolving clinical landscape for dendritic cell vaccines and cancer immunotherapy. Immunotherapy 11(2):75–79

    Google Scholar 

  49. Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P (2017) Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol 38(8):577–593

    Google Scholar 

  50. Sabado RL, Balan S, Bhardwaj N (2017) Dendritic cell-based immunotherapy. Cell Res 27(1):74–95

    Google Scholar 

  51. Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG (2016) Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res 22(8):1897–1906

    Google Scholar 

  52. Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Ginestier C, Wicha M, Moyer J, Prince M, Chang AR, Li Q (2012) Cancer stem cell vaccination confers significant anti-tumor immunity by selectively targeting cancer stem cells. J Clin Immunol 32(2):358–358

    Google Scholar 

  53. Yin T, Shi PF, Gou SM, Shen Q, Wang CY (2014) Dendritic cells loaded with pancreatic cancer stem cells (CSCs) lysates induce antitumor immune killing effect in vitro. PLoS One 9(12):e114581

    Google Scholar 

  54. Lu L, Tao HM, Chang AE, Hu YY, Shu GS, Chen QN, Egenti M, Owen J, Moyer JS, Prince MEP, Huang S, Wicha MS, Xia JC, Li Q (2015) Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Onco Targets Ther 4(3):e990767

    Google Scholar 

  55. Dashti A, Ebrahimi M, Hadjati J, Memarnejadian A, Moazzeni SM (2016) Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Lett 374(1):175–185

    Google Scholar 

  56. Hu YY, Lu L, Xia Y, Chen X, Chang AE, Hollingsworth RE, Hurt E, Owen J, Moyer JS, Prince MEP, Dai F, Bao YY, Wang Y, Whitfield J, Xia JC, Huang S, Wicha MS, Li Q (2016) Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res 76(16):4661–4672

    Google Scholar 

  57. Wefers C, Schreibelt G, Massuger LFAG, de Vries IJM, Torensma R (2018) Immune curbing of cancer stem cells by CTLs directed to NANOG. Front Immunol 9:1412

    Google Scholar 

  58. Calmeiro J, Carrascal M, Mendes L, Duarte IF, Gomes C, Serra J, Falcao A, Cruz MT, Neves BM (2019) Development of a novel dendritic cell-based immunotherapy targeting cancer stem cells. J Clin Oncol 37(15):e14009

    Google Scholar 

  59. Pang YB, He J, Cui BY, Xu S, Li XL, Wu MY, Liang R, Feng Y, Guo X, Zhang XH, Luo XL (2019) A potential antitumor effect of dendritic cells fused with cancer stem cells in hepatocellular carcinoma. Stem Cells Int 2019:Article ID 5680327

    Google Scholar 

  60. Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GM, Cribioli E, Maltese F, Galimberti S, Lopez AF, Biondi A, Bonnet D, Biagi E (2013) Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol 161(3):389–401

    Google Scholar 

  61. Deng Z, Wu Y, Ma W, Zhang S, Zhang YQ (2015) Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16:1

    Google Scholar 

  62. Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, Datar V, Kebriaei P, Lee DA, Champlin RE, Cooper LJ (2016) Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A 113(48):E7788–E7797

    Google Scholar 

  63. Miyamoto S, Kochin V, Kanaseki T, Hongo A, Tokita S, Kikuchi Y, Takaya A, Hirohashi Y, Tsukahara T, Terui T, Ishitani K, Hata F, Takemasa I, Miyazaki A, Hiratsuka H, Sato N, Torigoe T (2018) The antigen ASB4 on cancer stem cells serves as a target for CTL immunotherapy of colorectal cancer. Cancer Immunol Res 6(3):358–369

    Google Scholar 

  64. Ames E, Canter RJ, Grossenbacher SK, Mac S, Chen M, Smith RC, Hagino T, Perez-Cunningham J, Sckisel GD, Urayama S, Monjazeb AM, Fragoso RC, Sayers TJ, Murphy WJ (2015) NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol 195(8):4010–4019

    Google Scholar 

  65. Chen HC, Joalland N, Bridgeman JS, Alchami FS, Jarry U, Khan MWA, Piggott L, Shanneik Y, Li J, Herold MJ, Herrmann T, Price DA, Gallimore AM, Clarkson RW, Scotet E, Moser B, Eberl M (2017) Synergistic targeting of breast cancer stem-like cells by human gammadelta T cells and CD8(+) T cells. Immunol Cell Biol 95(7):620–629

    Google Scholar 

  66. Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, Alves V, Sousa V, Chijioke O, Munz C, Reis F, Rodrigues-Santos P, Gomes C (2016) Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med 14:163

    Google Scholar 

  67. Mullen JT, Tanabe KK (2002) Viral oncolysis. Oncologist 7(2):106–119

    Google Scholar 

  68. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC (2019) Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18(9):689–706

    Google Scholar 

  69. Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30(7):658–670

    Google Scholar 

  70. Chaurasiya S, Chen NG, Warner SG (2018) Oncolytic virotherapy versus cancer stem cells: a review of approaches and mechanisms. Cancers (Basel) 10(4):124

    Google Scholar 

  71. Zhang X, Komaki R, Wang L, Fang B, Chang JY (2008) Treatment of radioresistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus. Clin Cancer Res 14(9):2813–2823

    Google Scholar 

  72. Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS, Martuza RL, Rabkin SD (2013) Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A 110(29):12006–12011

    Google Scholar 

  73. Yano S, Tazawa H, Hashimoto Y, Shirakawa Y, Kuroda S, Nishizaki M, Kishimoto H, Uno F, Nagasaka T, Urata Y, Kagawa S, Hoffman RM, Fujiwara T (2013) A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases. Clin Cancer Res 19(23):6495–6505

    Google Scholar 

  74. Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M (2017) CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 8(44):76044–76056

    Google Scholar 

  75. Wang H, Chen NG, Minev BR, Szalay AA (2012) Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 10(1):167

    Google Scholar 

  76. Wang J, Sullenger BA, Rich JN (2012) Notch signaling in cancer stem cells. Adv Exp Med Biol 727:174–185

    Google Scholar 

  77. Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, Odunsi KO, Kozbor D (2014) CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 193(10):5327–5337

    Google Scholar 

  78. Yoo SY, Bang SY, Jeong SN, Kang DH, Heo J (2016) A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer. Oncotarget 7(13):16479–16489

    Google Scholar 

  79. Zhang ZY, Zheng SH, Yang WG, Yang C, Yuan WT (2017) Targeting colon cancer stem cells with novel blood cholesterol drug pitavastatin. Eur Rev Med Pharmacol Sci 21(6):1226–1233

    Google Scholar 

  80. Saha D, Martuza RL, Rabkin SD (2017) Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32(2):253–267

    Google Scholar 

  81. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Google Scholar 

  82. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Google Scholar 

  83. Najafi M, Mortezaee K, Majidpoor J (2019) Cancer stem cell (CSC) resistance drivers. Life Sci 234:116781

    Google Scholar 

  84. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M (2008) Cancer stem cell markers in common cancers – therapeutic implications. Trends Mol Med 14(10):450–460

    Google Scholar 

  85. Yadav AK, Desai NS (2019) Cancer stem cells: acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Rev Rep 15(3):331–355

    Google Scholar 

  86. Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G (2019) Meeting the challenge of targeting cancer stem cells. Front Cell Dev Biol 7:16

    Google Scholar 

  87. Schmohl JU, Vallera DA (2016) CD133, selectively targeting the root of cancer. Toxins (Basel) 8(6):165

    Google Scholar 

  88. Damek-Poprawa M, Volgina A, Korostoff J, Sollecito TP, Brose MS, O'Malley BW Jr, Akintoye SO, DiRienzo JM (2011) Targeted inhibition of CD133+ cells in oral cancer cell lines. J Dent Res 90(5):638–645

    Google Scholar 

  89. Skubitz AP, Taras EP, Boylan KL, Waldron NN, Oh S, Panoskaltsis-Mortari A, Vallera DA (2013) Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol 130(3):579–587

    Google Scholar 

  90. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43(5):935–946

    Google Scholar 

  91. Ohlfest JR, Zellmer DM, Panyam J, Swaminathan SK, Oh S, Waldron NN, Toma S, Vallera DA (2013) Immunotoxin targeting CD133(+) breast carcinoma cells. Drug Deliv Transl Res 3(2):195–204

    Google Scholar 

  92. Waldron NN, Barsky SH, Dougherty PR, Vallera DA (2014) A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 9(3):239–249

    Google Scholar 

  93. Huang J, Li C, Wang Y, Lv H, Guo Y, Dai H, Wicha MS, Chang AE, Li Q (2013) Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133(high) cancer stem cells in vitro and in vivo. Clin Immunol 149(1):156–168

    Google Scholar 

  94. Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171(3):280–287

    Google Scholar 

  95. Vallera DA, Zhang B, Gleason MK, Oh S, Weiner LM, Kaufman DS, McCullar V, Miller JS, Verneris MR (2013) Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother Radiopharm 28(4):274–282

    Google Scholar 

  96. Schmohl JU, Gleason MK, Dougherty PR, Miller JS, Vallera DA (2016) Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target Oncol 11(3):353–361

    Google Scholar 

  97. Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11(1):64

    Google Scholar 

  98. Sun BS, Li Y, Zhang ZF, You J, Wang CL (2013) Osteopontin combined with CD44v6, a novel prognostic biomarker in non-small cell lung cancer undergoing curative resection. Ann Thorac Surg 96(6):1943–1951

    Google Scholar 

  99. Castella EM, Ariza A, Pellicer I, Fernandez-Vasalo A, Ojanguren I (1998) Differential expression of CD44v6 in metastases of intestinal and diffuse types of gastric carcinoma. J Clin Pathol 51(2):134–137

    Google Scholar 

  100. Thapa R, Wilson GD (2016) The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int 2016:2087204

    Google Scholar 

  101. Hirata K, Suzuki H, Imaeda H, Matsuzaki J, Tsugawa H, Nagano O, Asakura K, Saya H, Hibi T (2013) CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer 109(2):379–386

    Google Scholar 

  102. Ma L, Dong L, Chang P (2019) CD44v6 engages in colorectal cancer progression. Cell Death Dis 10(1):30

    Google Scholar 

  103. Lau WM, Teng E, Chong HS, Lopez KA, Tay AY, Salto-Tellez M, Shabbir A, So JB, Chan SL (2014) CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 74(9):2630–2641

    Google Scholar 

  104. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174

    Google Scholar 

  105. Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12(10):1175–1180

    Google Scholar 

  106. Verel I, Heider KH, Siegmund M, Ostermann E, Patzelt E, Sproll M, Snow GB, Adolf GR, van Dongen GA (2002) Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing head-and-neck cancer xenografts. Int J Cancer 99(3):396–402

    Google Scholar 

  107. Borjesson PK, Postema EJ, Roos JC, Colnot DR, Marres HA, van Schie MH, Stehle G, de Bree R, Snow GB, Oyen WJ, van Dongen GA (2003) Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res 9(10 Pt 2):3961S–3972S

    Google Scholar 

  108. Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, Leemans CR, van Dongen GA (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12(20 Pt 1):6064–6072

    Google Scholar 

  109. Yang Y, Zhao X, Li X, Yan Z, Liu Z, Li Y (2017) Effects of anti-CD44 monoclonal antibody IM7 carried with chitosan polylactic acid-coated nano-particles on the treatment of ovarian cancer. Oncol Lett 13(1):99–104

    Google Scholar 

  110. Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X (2019) CD44-targeted magnetic nanoparticles kill head and neck squamous cell carcinoma stem cells in an alternating magnetic field. Int J Nanomedicine 14:7549–7560

    Google Scholar 

  111. Chen H, Lin J, Shan Y, Zhengmao L (2019) The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. Biomed Pharmacother 115:108857

    Google Scholar 

  112. Sanginario A, Miccoli B, Demarchi D (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors 7(4):9

    Google Scholar 

  113. Yang Y, Long Y, Wang Y, Ren K, Li M, Zhang Z, Xiang B, He Q (2020) Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int J Pharm 577:119085

    Google Scholar 

  114. Gautam M, Thapa RK, Gupta B, Soe ZC, Ou W, Poudel K, Jin SG, Choi HG, Yong CS, Kim JO (2020) Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapy. Expert Opin Drug Deliv 17(3):423–434

    Google Scholar 

  115. Liang X, Li X, Duan J, Chen Y, Wang X, Pang L, Kong D, Song B, Li C, Yang J (2018) Nanoparticles with CD44 targeting and ROS triggering properties as effective in vivo antigen delivery system. Mol Pharm 15(2):508–518

    Google Scholar 

  116. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238

    Google Scholar 

  117. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Google Scholar 

  118. Clara JA, Monge C, Yang Y, Takebe N (2019) Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 17(4):204–232

    Google Scholar 

  119. Doglioni G, Parik S, Fendt SM (2019) Interactions in the (pre)metastatic niche support metastasis formation. Front Oncol 9:219

    Google Scholar 

  120. Nwabo Kamdje AH, Takam Kamga P, Tagne Simo R, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Kumar Goel R, Mbo Amvene J, Krampera M (2017) Developmental pathways associated with cancer metastasis: notch, Wnt, and Hedgehog. Cancer Biol Med 14(2):109–120

    Google Scholar 

  121. Li L, Tang P, Li S, Qin X, Yang H, Wu C, Liu Y (2017) Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol 34(10):180

    Google Scholar 

  122. Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol 727:186–198

    Google Scholar 

  123. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473

    Google Scholar 

  124. Zeng S, Seifert AM, Zhang JQ, Cavnar MJ, Kim TS, Balachandran VP, Santamaria-Barria JA, Cohen NA, Beckman MJ, Medina BD, Rossi F, Crawley MH, Loo JK, Maltbaek JH, Besmer P, Antonescu CR, DeMatteo RP (2017) Wnt/beta-catenin signaling contributes to tumor malignancy and is targetable in gastrointestinal stromal tumor. Mol Cancer Ther 16(9):1954–1966

    Google Scholar 

  125. Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY (2018) Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells. Cells 7(11):208

    Google Scholar 

  126. Niyaz M, Khan MS, Mudassar S (2019) Hedgehog signaling: an Achilles’ heel in cancer. Transl Oncol 12(10):1334–1344

    Google Scholar 

  127. Warren JSA, Xiao Y, Lamar JM (2018) YAP/TAZ activation as a target for treating metastatic cancer. Cancers (Basel) 10(4):115

    Google Scholar 

  128. Elaimy AL, Mercurio AM (2018) Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology. Sci Signal 11(552):eaau1165

    Google Scholar 

  129. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94(4):1287–1312

    Google Scholar 

  130. Matsui WH (2016) Cancer stem cell signaling pathways. Medicine (Baltimore) 95(1 Suppl 1):S8–S19

    Google Scholar 

  131. Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Mackey HM, Lum BL, Darbonne WC, Marsters JC Jr, de Sauvage FJ, Low JA (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361(12):1164–1172

    Google Scholar 

  132. Dummer R, Guminski A, Gutzmer R, Dirix L, Lewis KD, Combemale P, Herd RM, Kaatz M, Loquai C, Stratigos AJ, Schulze HJ, Plummer R, Gogov S, Pallaud C, Yi T, Mone M, Chang AL, Cornelis F, Kudchadkar R, Trefzer U, Lear JT, Sellami D, Migden MR (2016) The 12-month analysis from basal cell carcinoma outcomes with LDE225 treatment (BOLT): a phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. J Am Acad Dermatol 75(1):113–125

    Google Scholar 

  133. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, Marmur E, Rudin CM, Chang AL, Low JA, Mackey HM, Yauch RL, Graham RA, Reddy JC, Hauschild A (2012) Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 366(23):2171–2179

    Google Scholar 

  134. Chang AL, Solomon JA, Hainsworth JD, Goldberg L, McKenna E, Day BM, Chen DM, Weiss GJ (2014) Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol 70(1):60–69

    Google Scholar 

  135. Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, Chintagumpala M, Takebe N, Kaste SC, Rusch M, Allen SJ, Onar-Thomas A, Stewart CF, Fouladi M, Boyett JM, Gilbertson RJ, Curran T, Ellison DW, Gajjar A (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33(24):2646–2654

    Google Scholar 

  136. Berlin J, Bendell JC, Hart LL, Firdaus I, Gore I, Hermann RC, Mulcahy MF, Zalupski MM, Mackey HM, Yauch RL, Graham RA, Bray GL, Low JA (2013) A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin Cancer Res 19(1):258–267

    Google Scholar 

  137. Belani CP, Dahlberg SE, Rudin CM, Fleisher M, Chen HX, Takebe N, Velasco MR Jr, Tester WJ, Sturtz K, Hann CL, Shanks JC, Monga M, Ramalingam SS, Schiller JH (2016) Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: a trial of the ECOG-ACRIN Cancer Research Group (E1508). Cancer 122(15):2371–2378

    Google Scholar 

  138. Catenacci DV, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR, Marsh R, Wallace J, Kozloff M, Rajdev L, Cohen D, Wade J, Sleckman B, Lenz HJ, Stiff P, Kumar P, Xu P, Henderson L, Takebe N, Salgia R, Wang X, Stadler WM, de Sauvage FJ, Kindler HL (2015) Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J Clin Oncol 33(36):4284–4292

    Google Scholar 

  139. Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T, Tsui V, Durham AB, Dlugosz AA, Haverty PM, Bourgon R, Tang JY, Sarin KY, Dirix L, Fisher DC, Rudin CM, Sofen H, Migden MR, Yauch RL, de Sauvage FJ (2015) Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 27(3):327–341

    Google Scholar 

  140. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H (2011) Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138(10):1925–1934

    Google Scholar 

  141. Cook N, Basu B, Smith DM, Gopinathan A, Evans J, Steward WP, Palmer D, Propper D, Venugopal B, Hategan M, Anthoney DA, Hampson LV, Nebozhyn M, Tuveson D, Farmer-Hall H, Turner H, McLeod R, Halford S, Jodrell D (2018) A phase I trial of the gamma-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer 118(6):793–801

    Google Scholar 

  142. Krop I, Demuth T, Guthrie T, Wen PY, Mason WP, Chinnaiyan P, Butowski N, Groves MD, Kesari S, Freedman SJ, Blackman S, Watters J, Loboda A, Podtelezhnikov A, Lunceford J, Chen C, Giannotti M, Hing J, Beckman R, Lorusso P (2012) Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol 30(19):2307–2313

    Google Scholar 

  143. Fouladi M, Stewart CF, Olson J, Wagner LM, Onar-Thomas A, Kocak M, Packer RJ, Goldman S, Gururangan S, Gajjar A, Demuth T, Kun LE, Boyett JM, Gilbertson RJ (2011) Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 29(26):3529–3534

    Google Scholar 

  144. Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, Froehlich AM, Paranilam J, Hayes DF, Wicha MS, Chang JC (2013) Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res 19(6):1512–1524

    Google Scholar 

  145. Pant S, Jones SF, Kurkjian CD, Infante JR, Moore KN, Burris HA, McMeekin DS, Benhadji KA, Patel BKR, Frenzel MJ, Kursar JD, Zamek-Gliszczynski MJ, Yuen ESM, Chan EM, Bendell JC (2016) A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer 56:1–9

    Google Scholar 

  146. Massard C, Azaro A, Soria JC, Lassen U, Le Tourneau C, Sarker D, Smith C, Ohnmacht U, Oakley G, Patel BKR, Yuen ESM, Benhadji KA, Rodon J (2018) First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Ann Oncol 29(9):1911–1917

    Google Scholar 

  147. Smith DC, Eisenberg PD, Manikhas G, Chugh R, Gubens MA, Stagg RJ, Kapoun AM, Xu L, Dupont J, Sikic B (2014) A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res 20(24):6295–6303

    Google Scholar 

  148. Yen WC, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B, Henner WR, Meisner R, Sato A, Shah J, Tang T, Wallace B, Wang M, Zhang C, Kapoun AM, Lewicki J, Gurney A, Hoey T (2015) Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res 21(9):2084–2095

    Google Scholar 

  149. Hu ZI, Bendell JC, Bullock A, LoConte NK, Hatoum H, Ritch P, Hool H, Leach JW, Sanchez J, Sohal DPS, Strickler J, Patel R, Wang-Gillam A, Firdaus I, Yu KH, Kapoun AM, Holmgren E, Zhou L, Dupont J, Picozzi V, Sahai V, O'Reilly EM (2019) A randomized phase II trial of nab-paclitaxel and gemcitabine with tarextumab or placebo in patients with untreated metastatic pancreatic cancer. Cancer Med 8(11):5148–5157

    Google Scholar 

  150. Basu S, Haase G, Ben-Ze'ev A (2016) Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res 5:F1000

    Google Scholar 

  151. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Google Scholar 

  152. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452(7187):650–653

    Google Scholar 

  153. Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills WK, Benbrook DM, Zuna R, Lightfoot S, Reis A, Anant S, Queimado L (2012) Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 31(22):2725–2737

    Google Scholar 

  154. Ramachandran I, Ganapathy V, Gillies E, Fonseca I, Sureban SM, Houchen CW, Reis A, Queimado L (2014) Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis 5(5):e1246

    Google Scholar 

  155. Jimeno A, Gordon M, Chugh R, Messersmith W, Mendelson D, Dupont J, Stagg R, Kapoun AM, Xu L, Uttamsingh S, Brachmann RK, Smith DC (2017) A first-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in patients with advanced solid tumors. Clin Cancer Res 23(24):7490–7497

    Google Scholar 

  156. Ko AH, Chiorean EG, Kwak EL, Lenz H-J, Nadler PI, Wood DL, Fujimori M, Inada T, Kouji H, McWilliams RR (2016) Final results of a phase Ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. J Clin Oncol 34(15 Suppl):e15721

    Google Scholar 

  157. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-beta. Cancer Res 72(16):4119–4129

    Google Scholar 

  158. Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15(4):315–327

    Google Scholar 

  159. Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Kozloff M, Simionato F, Cleverly A, Smith C, Wang S, Man M, Driscoll KE, Estrem ST, Lahn MMF, Benhadji KA, Tabernero J (2019) TGFbeta receptor inhibitor galunisertib is linked to inflammation- and remodeling-related proteins in patients with pancreatic cancer. Cancer Chemother Pharmacol 83(5):975–991

    Google Scholar 

  160. Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, Cher L, Steinbach JP, Capper D, Specenier P, Rodon J, Cleverly A, Smith C, Gueorguieva I, Miles C, Guba SC, Desaiah D, Lahn MM, Wick W (2016) A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncology 18(8):1146–1156

    Google Scholar 

  161. Stine RR, Matunis EL (2013) JAK-STAT signaling in stem cells. Adv Exp Med Biol 786:247–267

    Google Scholar 

  162. Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, Maitland NJ, Collins AT (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9(5):R83

    Google Scholar 

  163. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E 3rd, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 104(41):16158–16163

    Google Scholar 

  164. Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC, Madan B, Amalini C, Loh YK, Ong LC, William AD, Lee A, Poulsen A, Jayaraman R, Ong KH, Ethirajulu K, Dymock BW, Wood JW (2011) SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia 25(11):1751–1759

    Google Scholar 

  165. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273

    Google Scholar 

Download references

Acknowledgments

Our sincere appreciation to Dr. Satish Ramalingam (Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kanchipuram, Tamil Nadu, India) for his helpful discussion, carefully reading this book chapter and providing critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ileng Kumaran .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, M.K. et al. (2020). Targeting Therapies for Cancer Stem Cells. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_16

Download citation

Publish with us

Policies and ethics