Skip to main content

Cancer Stem Cells and Therapeutic Angiogenesis

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies

Abstract

Angiogenesis is a highly regulated process of formation of new blood vessel from preexisting blood vessel during fetal development, ovulation, and wound healing. Tumor growth and maintenance are critically controlled by tumor angiogenesis by facilitating the ingress of tumor cells into the circulatory system and in turn metastatic spread of the tumor. Apart from self-renewal and proliferating capabilities, cancer stem cells (CSCs) are also involved in tumor angiogenesis. CSCs establish a vascular niche by expressing vascular-related mediators to induce neovascularity around tumors. Developing antiangiogenic agents that also targets CSCs and evaluating its effect on a three-dimensional (3D) angiogenesis spheroid model are significant cancer therapeutic measures as the interactions between niche and CSCs and the heterogeneity can be understood better by using 3D spheroid. Furthermore exploiting the antiangiogenic effect of phytochemicals is beneficial over other available conventional drugs as they have relative pharmacological safety and target multiple molecular pathways to exert its anticancer effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG-2:

ATP-binding cassette subfamily G member 2

ALK1:

Activin A receptor-like type 1

BM:

Basement membrane

BMP:

Bone morphogenic proteins

BMPR:

Bone morphogenetic protein receptor

COX-2:

Cyclooxygenase-2

CSC:

Cancer stem cell

EC:

Endothelial cell

ECM:

Extracellular matrix

EGCG:

Epigallocatechin gallate

EPC:

Endothelial progenitor cell

FGF:

Fibroblast growth factor

LGR5:

Leucine-rich repeat-containing G-protein coupled receptor 5

MVD:

Microvessel density

PD-ECGF:

Platelet-derived endothelial cell growth factor 1

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

SDF-1:

Stromal cell-derived factor 1

TGF:

Transforming growth factor

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

VEGFR-2:

Vascular endothelial growth factor receptor 2

References

  1. Sinha M, Ghatak S, Roy S, Sen CK (2015) microRNA-200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal 22(14):1257–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    Article  CAS  PubMed  Google Scholar 

  3. Oklu R, Walker TG, Wicky S, Hesketh R (2010) Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol 21:1791–1805

    Article  PubMed  Google Scholar 

  4. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970

    Article  CAS  PubMed  Google Scholar 

  5. Presta M, Dell'Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  7. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  8. Fessler E, Dijkgraaf FE, De Sousa E, Melo F, Medema JP (2013) Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett 341(1):97–104

    Article  CAS  PubMed  Google Scholar 

  9. Lugano R, Ramachandran M, Dimberg A (2019) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1745–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nussenbaum F, Herman IM (2010) Tumor angiogenesis: insights and innovations. J Oncol 2010:132641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97(26):14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Investig 103(2):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carmeliet P, Mackman N, Moons L et al (1996) Role of tissue factor in embryonic blood vessel development. Nature 383(6595):73–75

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968

    CAS  PubMed  Google Scholar 

  15. Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159(2):391–400

    Article  CAS  PubMed  Google Scholar 

  16. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

    Article  CAS  PubMed  Google Scholar 

  17. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR (2002) Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62(21):6021–6025

    CAS  PubMed  Google Scholar 

  18. Waite KA, Eng C (2003) From developmental disorder to heritable cancer: it's all in the BMP/TGF-β family. Nat Rev Genet 4(10):763–773

    Article  CAS  PubMed  Google Scholar 

  19. Ota T, Fujii M, Sugizaki T et al (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-β in human umbilical vein endothelial cells. J Cell Physiol 193(3):299–318

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Bao Q, Renner A, Camaj P, Eichhorn M, Ischenko I, Angele M, Kleespies A, Jauch KW, Bruns C (2011) Cancer stem cells and angiogenesis. Int J Dev Biol 55(4–5):477–482

    Article  CAS  PubMed  Google Scholar 

  21. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kise K, Kinugasa-Katayama Y, Takakura N (2016) Tumor microenvironment for cancer stem cells. Adv Drug Del Rev 99:197–205

    Article  CAS  Google Scholar 

  23. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143

    Article  CAS  PubMed  Google Scholar 

  24. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    Article  CAS  PubMed  Google Scholar 

  26. Achilles EG, Fernandez A, Allred EN, Kisker O, Udagawa T, Beecken WD, Flynn E, Folkman J (2001) Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for “no take” of human tumors in mice. J Natl Cancer Inst 93(14):1075–1081

    Article  CAS  PubMed  Google Scholar 

  27. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356

    Article  CAS  PubMed  Google Scholar 

  28. Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, Ng IO, Man K, To KF, Lai PB, Lo CM (2012) CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 55(3):807–820

    Article  CAS  PubMed  Google Scholar 

  29. Shao ES, Lin L, Yao YA, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114:2197–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco FA, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  CAS  PubMed  Google Scholar 

  31. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa RA, Mckay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  CAS  PubMed  Google Scholar 

  32. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134:2709–2718

    Article  CAS  PubMed  Google Scholar 

  33. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Sofia Correia A, Soulet D, Major T, Menon J et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M et al (2007) A perivascular niche f. or brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  35. Bautch VL (2011) Stem cells and the vasculature. Nat Med 17(11):1437–1443

    Article  CAS  PubMed  Google Scholar 

  36. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556

    Article  CAS  PubMed  Google Scholar 

  37. ALHulais RA, Ralph SJ (2019) Cancer stem cells, stemness markers and selected drug targeting: metastatic colorectal cancer and cyclooxygenase-2/prostaglandin E2 connection to WNT as a model system. J Cancer Metastasis Treat 5:3–71

    CAS  Google Scholar 

  38. Oh J, Hlatky L, Jeong YS, Kim D (2016) Therapeutic effectiveness of anticancer phytochemicals on cancer stem cells. Toxins 8(7):199

    Article  PubMed Central  CAS  Google Scholar 

  39. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    Article  CAS  PubMed  Google Scholar 

  40. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci 104:4048–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee SH, Nam HJ, Kang HJ, Kwon HW, Lim YC (2013) Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur J Cancer 49:3210–3218

    Article  CAS  PubMed  Google Scholar 

  44. Lin CH, Shen YA, Hung PH, Yu YB, Chen YJ (2012) Epigallocatechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complement Altern Med 12:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mineva ND, Paulson KE, Naber SP, Yee AS, Sonenshein GE (2013) Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One 8:e73464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clarke N, Germain P, Altucci L, Gronemeyer H (2004) Retinoids: potential in cancer prevention and therapy. Expert Rev Mol Med 6:1–23

    Article  PubMed  Google Scholar 

  47. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR, Guerrero-Cazares H, Quinones-Hinojosa A, Laterra J, Xia S (2011) Regulation of glioblastoma stem cells by retinoic acid: role for notch pathway inhibition. Oncogene 30:3454–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C et al (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122(3):777–785

    Article  CAS  PubMed  Google Scholar 

  49. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Correa de Sampaio P, Auslaender D, Krubasik D, Failla AV, Skepper JN, Murphy G, English WR (2012) A Heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One 7(2):e30753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pfisterer L, Korff T (2016) Spheroid-based in vitro angiogenesis model. In: Martin S, Hewett P (eds) Angiogenesis protocols. Methods in molecular biology, vol 1430. Humana, New York, NY, pp 167–177

    Chapter  Google Scholar 

  52. Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M, Meyer-Schaller N, Cornille K, Hopfer U, Bentires-Alj M, Christofori G (2014) VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res 74(5):1566–1575

    Article  CAS  PubMed  Google Scholar 

  53. Mohammadinejad R, Biagioni A, Arunkumar G et al (2020) EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03449-3

Download references

Acknowledgments

This work was supported in part by DST-SERB-ECR Grant (DST No: ECR/2015/000265).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagavatheeswaran, S., Balakrishnan, A. (2020). Cancer Stem Cells and Therapeutic Angiogenesis. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_11

Download citation

Publish with us

Policies and ethics