Advertisement

A Fully Integrated Tunable Memristor Emulator Circuit

  • Vikash Kumar
  • Indrajit Pal
  • Aminul IslamEmail author
Conference paper
  • 63 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 664)

Abstract

This chapter introduces the design of a memristor emulator which can be used for fully integrated circuit applications. The design employs a single voltage differencing transconductance amplifier (VDTA) as the active building block for simulating emulator behavior. Further, the design also contains one active analog multiplier, one passive grounded resistor, and capacitor, respectively. The proposed emulator circuit is simulated on the 45 nm CMOS technology node making it both cost and power-efficient emulator circuit. All the analytical derivations mentioned in this research work have been verified by simulation results obtained using Virtuoso custom design platform of Cadence. The non-volatile nature of the proposed circuit has also been validated.

Keywords

Voltage differencing transconductance amplifier Memristor emulator Voltage mode Memductance Hysteresis loop 

References

  1. 1.
    Chua LO (1971) Memristor-the missing circuit element. IEEE Trans Circ Theory 18(5):507–519CrossRefGoogle Scholar
  2. 2.
    Strukov D, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nat Lett 453:80–83CrossRefGoogle Scholar
  3. 3.
    Ho Y, Huang GM, Li P (2011) Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans Circ Syst I Reg Pap 58(4):724–736MathSciNetCrossRefGoogle Scholar
  4. 4.
    Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221CrossRefGoogle Scholar
  5. 5.
    Talukdar A, Radwan AG, Salama KN (2011) Generalized model for memristor-based Wien family oscillators. Microelectron J 42(9):1032–1038CrossRefGoogle Scholar
  6. 6.
    Driscoll T, Quinn J, Klein S, Kim HT, Kim BJ, Pershin YV, Di Ventra M, Basov DN (2010) Memristive adaptive filters. Appl Phys Lett 97(9):093502CrossRefGoogle Scholar
  7. 7.
    Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) A chaotic circuit based on Hewlett-Packard memristor. Chaos 22:023136MathSciNetCrossRefGoogle Scholar
  8. 8.
    Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) Memristive switches enable stateful logic operations via material implication. Nature 464(7290):873–876CrossRefGoogle Scholar
  9. 9.
    Serrano-Gotarredona T, Masquelier T, Linares-Barranco B, Adamatzky A, Chua L (2014) Spike-timing-dependent-plasticity with memristors. Memristor networks. Springer, Cham, pp 211–247Google Scholar
  10. 10.
    Alharbi AG, Fouda ME, Khalifa ZJ, Chowdhury MH (2017) Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5:5399–5409CrossRefGoogle Scholar
  11. 11.
    Sánchez-López C, Aguila-Cuapio LE (2017) A 860 kHz grounded memristor emulator circuit. AEU-Int J Electron Commun 73:23–33CrossRefGoogle Scholar
  12. 12.
    Sánchez-López C, Mendoza-López J, Carrasco-Aguilar MA, Muñiz-Montero C (2014) A floating analog memristor emulator circuit. IEEE Trans Circ Syst II Exp Briefs 61(5):309–313Google Scholar
  13. 13.
    Babacan Y, Kaçar F (2017) Floating memristor emulator with subthreshold region. Analog Integr Circ Sig Process 90(2):471–475CrossRefGoogle Scholar
  14. 14.
    Aishwarya N, Nayak A, Pal I, Kumar V, Islam A (2019) A novel CNFET based tunable memristor emulator. Microsyst Technol Micro Nanosyst Inf Stor Process Syst, 1–9Google Scholar
  15. 15.
    Pal I, Kumar V, Aishwarya N, Nayak A, Islam A (2019) A VDTA-based robust electronically tunable memristor emulator circuit. Analog Integr Circ Sig Process, 1–13Google Scholar
  16. 16.
    Kumar V, Mehra R, Islam A (2017) A 2.5 GHz low power, high-Q, reliable design of active bandpass filter. IEEE Trans Dev Mater Reliab 17(1):229–244CrossRefGoogle Scholar
  17. 17.
    Mehra R, Kumar V, Islam A (2018) Reliable and Q-enhanced floating active inductors and their application in RF bandpass filters. IEEE Access 6:48181–48194CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringPresidency UniversityBengaluruIndia
  2. 2.Department of Electronics and Communication EngineeringBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations