Skip to main content

Pharmaceutical Multicomponent Crystals: Structure, Design, and Properties

  • Chapter
  • First Online:
Advances in Organic Crystal Chemistry

Abstract

Multicomponent crystals, which include cocrystals and salts, have been of great interest to the pharmaceutical field owing to their ability to be used as an alternative solid form of drugs with better physicochemical properties compared to their corresponding parent drugs and as a potential source for patents and research opportunities. Although multicomponent crystal formation was originally seen to only improve the solubility and dissolution rate profiles of drug molecules, it has also shown potential applications in overcoming other problems, such as hygroscopicity, poor tabletability, instability, and bitter taste. This chapter highlights some multicomponent crystal applications that tackle common unfavorable physicochemical properties of drugs in the pharmaceutical field. The multicomponent crystal design has been covered with regard to the relation between the crystal structure and physicochemical properties. The study cases presented in this chapter emphasize the structural aspect of multicomponent crystals to provide a molecular-level understanding of the physicochemical property changes accompanying multicomponent crystal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodman, L.S., Gilman, A., Hardman, J.G., Gilman, A.G., Limbird, L.E.: Goodman and Gilmans’s the Pharmacological Basis of Therapeutics. McGraw-Hill, New York (1996)

    Google Scholar 

  2. Brittain, H.G.: Polymorphism in Pharmaceutical Solids. Informa, New York (2009)

    Google Scholar 

  3. Lynn, E.J., Walter, R.G., Harris, L.A., Dendy, R., James, M.J.: Nitrous oxide: it’s a gas. Psychedelic Drugs 5, 1–7 (1972)

    Google Scholar 

  4. Vippagunta, S.R., Brittain, H.G., Grant, D.J.W.: Crystalline solids. Adv. Drug. Deliv. Rev. 48, 3–26 (2001)

    CAS  PubMed  Google Scholar 

  5. Shan, N., Zawarotko, M.J.: The role of cocrystals in pharmaceutical science. Drug Discov. Today 13, 440–446 (2008)

    CAS  PubMed  Google Scholar 

  6. Byrn, S.R., Pfeiffer, R.R., Stephenson, G., Grant, D.J.W., Gleason, W.B.: Solid-state pharmaceutical chemistry. Chem. Mater. 6, 1148–1158 (1994)

    CAS  Google Scholar 

  7. Cheney, M.L., Weyna, D.R., Shan, N., Hanna, M., Wojtas, L., Zawarotko, M.J.: Supramolecular architectures of meloxicam carboxylic acid cocrystals, a crystal engineering case study. Cryst. Growth Des. 10, 4401–4413 (2010)

    CAS  Google Scholar 

  8. Sun, C.C., Hou, H.: improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst. Growth Des. 8, 1575–1579 (2008)

    CAS  Google Scholar 

  9. Chen, S., Guzei, I.A., Yu, L.: New polymorphs of ROY and new record for coexisting polymorphs of solved structures. J. Am. Chem. Soc. 127(27), 9881–9885 (2005)

    CAS  PubMed  Google Scholar 

  10. Yu, L.: Polymorphism in molecular solids: an extraordinary system of red, orange, and yellow crystals. Acc. Chem. Res. 43, 1257–1266 (2010)

    CAS  PubMed  Google Scholar 

  11. Bryn, S., Pfeiffer, R., Ganey, M., Hoiberg, C., Poochikian, G.: Pharmaceutical solids: a strategic approach to regulatory considerations. Pharm. Res. 12, 945–954 (1995)

    Google Scholar 

  12. Aitipamula, S., Banerjee, R., Bansal, A.K., Biradha, K., Cheney, M.L., Choudhury, A.R., Desiraju, G.R., et al.: Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 12, 2147–2152 (2012)

    CAS  Google Scholar 

  13. Grothe, E., Meekes, H., Vlieg, E., ter Horst, J.H., de Gelder, R.: Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst. Growth Des. 16, 3237–3243 (2016)

    CAS  Google Scholar 

  14. Kavanagh, O.N., Croker, D.M., Walker, G.M., Zaworotko, M.J.: Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today 24, 796–804 (2019)

    CAS  PubMed  Google Scholar 

  15. Hancock, B.C., Zografi, B.: Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86, 1–12 (1997)

    CAS  PubMed  Google Scholar 

  16. Hancock, B.C., Parks, M.: What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17, 397–404 (2000)

    CAS  PubMed  Google Scholar 

  17. Grohganz, H., Lobman, K., Priemel, P., Jensen, K.T., Graeser, K., Rades, T.: Amorphous drugs and dosage forms. J. Drug. Del. Sci. Tech. 23, 403–408 (2013)

    CAS  Google Scholar 

  18. Sibik, J., Lobmann, K., Zeitler, T., Rades, J.A.: Predicting crystallization of amorphous drugs with terahertz spectroscopy. Mol. Pharm. 12, 3062–3068 (2015)

    CAS  PubMed  Google Scholar 

  19. Datta, S., Grant, D.J.W.: Crystal structures of drugs: advances in determination, prediction and engineering. Nat. Rev. Drug Discov. 3, 42–57 (2004)

    CAS  PubMed  Google Scholar 

  20. Bernstein, J.: Polymorphism in Molecular Crystals. Clarendon, Oxford (2002)

    Google Scholar 

  21. Morissette, S.L., Almarsson, O., Peterson, M.L., Remenar, J.F., Read, M.J., Lemmo, A.V., Ellis, S., Cima, M.J., Gardner, C.R.: High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug. Deliv. Rev. 56, 275–300 (2004)

    CAS  PubMed  Google Scholar 

  22. Hilfiker, R.: Polymorphism in the Pharmaceutical Industry. Wiley, Weinheim (2006)

    Google Scholar 

  23. Seddon, K.R.: Pseudopolymorph: a polemic. Cryst. Growth Des. 4, 1087–1087 (2004)

    CAS  Google Scholar 

  24. Bernstein, J.: …And another comment on pseudopolymorphism. Cryst. Growth Des. 5, 1661–1662 (2005)

    CAS  Google Scholar 

  25. Putra, O.D., Pettersen, A., Lill, S.O.N., Umeda, D., Yonemochi, E., Nugraha, Y.P., Uekusa, H.: Capturing a new hydrate polymorph of amodiaquine dihydrochloride dihydrate via heterogeneous crystallization. Cryst. Eng. Commun. 2019(21), 2053–2057 (2019)

    Google Scholar 

  26. Healy, A.M., Worku, Z.A., Kumar, D., Madi, A.M.: Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv. Drug Deliv. Rev. 117, 25–46 (2017)

    CAS  PubMed  Google Scholar 

  27. Vioglio, P.C., Chierotti, M.R., Gobetto, R.: Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 117, 86–110 (2017)

    Google Scholar 

  28. Desiraju, G.R., Vittal, J.J., Ramanan, A.: Crystal Engineering: A Textbook. World Scientific, Singapore (2011)

    Google Scholar 

  29. Baghel, S., Cathcart, H., O’Reilly, N.J.: Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 105, 2527–2544 (2016)

    CAS  PubMed  Google Scholar 

  30. Almarsson, O., Vadas, E.B.: Molecules, materials, medicines (M3): linking molecules to medicines through pharmaceutical material science. Cryst. Growth. Des. 15, 5645–5647 (2015)

    CAS  Google Scholar 

  31. Daousani, C., Macheras, P.: Biopharmaceutic classification of drugs revisited. Eur. J. Pharm. Sci. 82–87, 82–87 (2016)

    Google Scholar 

  32. Butler, J.M., Dressman, J.B.: The developability classification system: application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 99, 4940–4954 (2010)

    CAS  PubMed  Google Scholar 

  33. Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Lee, J.: Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9, 304–316 (2014)

    Google Scholar 

  34. Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., Onoue, S.: Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 420, 1–10 (2011)

    CAS  PubMed  Google Scholar 

  35. Onoue, S., Yamada, S., Chan, H.K.: Nanodrugs: pharmacokinetics and safety. Int. J. Nanomed. 9, 1025–1037 (2014)

    CAS  Google Scholar 

  36. Newman, A.W., Reutzel-Edens, S.M., Zografi, G.: Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J. Pharm. Sci. 97, 1047–1059 (2008)

    CAS  PubMed  Google Scholar 

  37. Sun, C.C., Grant, D.J.W.: Improved tableting properties of p-hydroxybenzoic acid by aater of crystallization: a molecular insight. Pharm. Res. 21, 382–386 (2004)

    PubMed  Google Scholar 

  38. Zu, B., Wang, J., Zhang, Q., Zu, B., Wang, J., Zhang, Q., Mei, X.: Improving dissolution and photostability of vitamin K3 via cocrystallization with naphthoic acids and sulfamerazine. Cryst. Growth Des. 16, 483–492 (2016)

    Google Scholar 

  39. Song, J.X., Yan, Y., Yao, J., Chen, J.M., Lu, T.B.: Improving the solubility of lenalidomide via cocrystals. Cryst. Growth Des. 14, 3069–3077 (2014)

    CAS  Google Scholar 

  40. Geng, N., Chen, J.M., Li, Z.J., Jiang, L., Lu, T.B.: Approach of cocrystallization to improve the solubility and photostability of tranilast. Cryst. Growth Des. 13, 3546–3553 (2013)

    CAS  Google Scholar 

  41. Good, D.J., Rodríguez-Hornedo, N.: Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 9, 2252–2264 (2009)

    CAS  Google Scholar 

  42. Visalakshi, N.A., Mariappan, T.T., Bhutani, H., Singh, S.: Behavior of moisture gain and equilibrium moisture contents (EMC) of various drug substances and correlation with compendial information on hygroscopicity and loss on drying. Pharm. Dev. Tech. 10, 489–497s (2005)

    CAS  Google Scholar 

  43. Sun, C.C., Grant, D.J.W.: Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm. Res. 18, 274–280 (2001)

    CAS  PubMed  Google Scholar 

  44. Gupta, D., Bhatia, D., Dave, B., Sutariya, V., Gupta, S.V.: Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Molecules 23, 1719 (2018)

    PubMed Central  Google Scholar 

  45. Putra, O.D., Yoshida, T., Umeda, D., Gunji, M., Uekusa, H., Yonemochi, E.: Crystallographic analysis of phase dissociation related to anomalous solubility of irsogladine maleate. Cryst. Growth Des. 16, 6714–6718 (2016)

    CAS  Google Scholar 

  46. Tovey, G.D.: Pharmaceutical Formulation: The Science and Technology of Dosage Forms. The Royal Society of Chemistry, Croydon (2018)

    Google Scholar 

  47. Iacocca, R.G., Burcham, C.L., Hilden, L.R.: Particle engineering: a strategy for establishing drug substance physical property specifications during small molecule development. J. Pharm. Sci. 99, 51–75 (2010)

    CAS  PubMed  Google Scholar 

  48. Chattoraj, S., Sun, C.C.: Crystal and particle engineering strategies for improving powder compression and flow properties to enable continuous tablet manufacturing by direct compression. J. Pharm. Sci. 107, 968–974 (2018)

    CAS  PubMed  Google Scholar 

  49. Ramirez, M.A., Borja, N.L.: Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 28, 646–655 (2008)

    CAS  PubMed  Google Scholar 

  50. Steel, J.W., Faulds, D., Goa, K.L.: Epalrestat. a review of its pharmacology, and therapeutic potential in late-onset complications of diabetes mellitus. Drugs Aging 3, 532–555 (1993)

    Google Scholar 

  51. Swapna, B., Suresh, K., Nangia, A.: Color polymorphs of aldose reductase inhibitor epalrestat: configurational, conformational and synthon differences. Chem. Commun. 52, 4037–4040 (2016)

    Google Scholar 

  52. Igarashi, R., Nagase, H., Furuishi, T., Endo, T., Tomono, K., Ueda, H.: Crystal structure of epalrestat non-solvate. X-Ray Struct. Anal. Online 29, 23–24 (2013)

    Google Scholar 

  53. Ishida, T., In, Y., Inoue, M., Ueno, Y., Tanaka, C., Hamanaka, N.: Structural elucidation of epalrestat (ONO-2235), a potent aldose reductase inhibitor, and isomerization of its double bonds. Tetrahedron Lett. 30, 959–962 (1989)

    CAS  Google Scholar 

  54. Nagase, H., Kobayashi, M., Ueda, H., Furuishi, T., Gunji, M., Endo, T., Yonemochi, E.: Crystal structure of an epalrestat dimethanol solvate. X-Ray Struct. Anal. Online 32, 7–9 (2016)

    CAS  Google Scholar 

  55. Ishida, T., In, Y, Inoue, M., Tanaka, C., Hamanaka, N.: Conformation of (Z)-3-carboxymethyl-[(2E)-2-methyl-3-phenylpropenylidene]rhodanine (epalrestat), a potent aldose reductase inhibitor: X-ray crystallographic, energy calculational, and nuclear magnetic resonance Studies. J. Chem. Soc. Perkin Trans. 2(2), 1085–1091 (1990)

    Google Scholar 

  56. Umeda, D., Putra, O.D., Gunji, M., Fukuzawa, K., Yonemochi, E.: Epalrestat tetrahydrofuran monosolvate: crystal structure and phase transition. Acta Crystallogr. E Cryst. Commun. 73, 941–944 (2017)

    CAS  Google Scholar 

  57. Putra, O.D., Umeda, D., Fukuzawa, K., Gunji, M., Yonemochi, E.: A New solvate of epalerstat, a drug for diabetic neuropathy. Acta Crystallogr. E Cryst. Commun. 73, 1264–1267 (2017)

    CAS  Google Scholar 

  58. Putra, O.D., Umeda, D., Nugraha, Y.P., Furuishi, T., Nagase, H., Fukuzawa, K., Uekusa, H., Yonemochi, E.: Solubility improvement of epalrestat by layered structure formation via cocrystallization. Cryst. Eng. Commun. 19, 2614–2622 (2017)

    CAS  Google Scholar 

  59. Umeda, Y., Fukami, T., Furuishi, T., Suzuki, T., Makimura, M., Tomono, K.: Molecular complex consisting of two typical external medicines: intermolecular interaction between indomethacin and lidocaine. Chem. Pharm. Bull. 55, 832–836 (2007)

    CAS  PubMed  Google Scholar 

  60. Wang, J., Yu, Q., Dai, W., Mei, X.: Drug-drug co-crystallization presents a new opportunity for the development of stable vitamins. Chem. Commun. 52, 3572–3575 (2016)

    CAS  Google Scholar 

  61. Bangalore, S., Kamalakkannan, G., Parkar, S., Messerli, F.H.: Fixed-dose combinations improve medication compliance: a meta-analysis. Am. J. Med. 120, 713–719 (2007)

    PubMed  Google Scholar 

  62. Vilar, L., Canadas, V., Arruda, M.J., Arahata, C., Agra, R., Pontes, L., Montenegro, L., Vilar, C.F., Silva, L.M., Albuquerque, J.L., Gusmão, A.: Comparison of metformin, gliclazide MR and rosiglitazone in monotherapy and in combination for type 2 diabetes. Arq. Bras. Endocrinol. Metabol. 54, 311–318 (2010)

    PubMed  Google Scholar 

  63. Jakobsen, D.F., Frokjaer, S., Larsen, C., Niemann, H., Buur, A.: Application of isothermal microcalorimetry in preformulation. I. hygroscopicity of drug substances. Int. J. Pharm. 156, 67–77 (1997)

    CAS  Google Scholar 

  64. Childs, S.L., Chyall, L.J., Dunlap, J.T., Coates, D.A., Stahly, B.C., Stahly, G.P.: A metastable polymorph of metformin hydrochloride: isolation and characterization using capillary crystallization and thermal microscopy techniques. Cryst. Growth Des. 4, 441–449 (2004)

    CAS  Google Scholar 

  65. Putra, O.D., Yonemochi, E., Uekusa, H.: Isostructural multicomponent gliclazide crystals with improved solubility. Cryst. Growth Des. 16, 6568–6573 (2016)

    Google Scholar 

  66. Putra, O.D., Furuishi, T., Yonemochi, E., Terada, K., Uekusa, H.: Drug-drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs. Cryst. Growth Des. 16, 3577–3581 (2016)

    CAS  Google Scholar 

  67. Tye, C.K., Sun, C.C., Amidon, G.E.: Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J. Pharm. Sci. 94, 465–472 (2005)

    CAS  PubMed  Google Scholar 

  68. Patel, S., Kaushal, A.M., Bansal, A.K.: Compression physics in the formulation development of tablets. Crit. Rev. Ther. Drug Carrier Syst. 23, 1–65 (2006)

    CAS  PubMed  Google Scholar 

  69. Bag, P.P., Chen, M., Sun, C.C., Reddy, C.M.: Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound. CrystEngComm 14, 3865–3867 (2012)

    CAS  Google Scholar 

  70. Canonica, G.W., Blaiss, M.: Antihistaminic, anti-inflammatory, and antiallergic properties of the nonsedating second-generation antihistamine desloratadine: a review of the evidence. World Allergy Organ. J. 4, 47–53 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar, B.V.S., Kale, S.A., Choudhari, R.B., Pradhan, N.S.C.: Novel crystalline forms of desloratadine and processes for their preparation. Patent US2007/0135472A1 (2006)

    Google Scholar 

  72. Ainurofiq, A., Mauludin, R., Mudhakir, D., Umeda, D., Soewandhi, S.N., Putra, O.D., Yonemochi, E.: Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur. J. Pharm. Sci. 111, 65–72 (2018)

    CAS  PubMed  Google Scholar 

  73. Tao, W., Chen, J., Lu, T., Ma, L.: Phenazopyridine cocrystal and salts that exhibit enhanced solubility and stability. Cryst. Growth Des. 12, 3144–3152 (2012)

    CAS  Google Scholar 

  74. Stanton, M.K., Bak, A.: Physicochemical properties of pharmaceutical co-crystals: a case study of ten AMG 517 co-crystals. Cryst. Growth Des. 8, 3856–3862 (2008)

    CAS  Google Scholar 

  75. Putra, O.D., Yoshida, T., Umeda, D., Higashi, K., Uekusa, H., Yonemochi, E.: Crystal structure determination of dimenhydrinate after more than 60 years: solving salt-cocrystal ambiguity via solid-state characterizations and solubility study. Cryst. Growth Des. 16, 5223–5229 (2016)

    CAS  Google Scholar 

  76. He, H., Huang, Y., Zhang, Q., Wang, J., Mei, X.: Zwitterionic cocrystals of flavonoids and proline: solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst. Growth Des. 16, 2348–2356 (2016)

    CAS  Google Scholar 

  77. Maeno, Y., Fukami, T., Kawahata, M., Yamaguchi, K., Tagami, T., Ozeki, T., Suzuki, T., Tomono, K.: Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int. J. Pharm. 473, 179–186 (2014)

    CAS  PubMed  Google Scholar 

  78. Swapna, B., Nangia, A.: Epalrestat-cytosine cocrystal and salt structures: attempt to control E,Z→Z,Z isomerization. Cryst. Growth Des. 17, 3350–3360 (2017)

    CAS  Google Scholar 

  79. Putra, O.D., Umeda, D., Nugraha, Y.P., Nango, K., Yonemochi, E., Uekusa, H.: Simultaneous improvement of epalrestat photostability and solubility via cocrystallization: a case study. Cryst. Growth Des. 18, 373–379 (2018)

    CAS  Google Scholar 

  80. Ohashi, Y., Tomotake, Y., Uchida, A., Sasada, Y.: Crystalline-state reaction of cobaloxime complexes by X-ray exposure. 13. A stepwise structure analysis of the concerted process of racemization. J. Am. Chem. Soc. 108, 1196–1202 (1986)

    CAS  Google Scholar 

  81. Couplands, J.N., Hayes, J.E.: Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm. Res. 31, 2921–2939 (2014)

    Google Scholar 

  82. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 38, 1033–1046 (2004)

    Google Scholar 

  83. Thakral, S., Thakral, N.K., Majumdar, D.K.: Eudragit: a technology evaluation. Expert Opin. Drug Deliv. 10, 131–149 (2013)

    CAS  PubMed  Google Scholar 

  84. Wang, C., Hu, S., Sun, C.C.: Expedited development of a high dose orally disintegrating metformin tablet enabled by sweet salt formation with acesulfame. Int. J. Pharm. 532, 435–443 (2017)

    CAS  PubMed  Google Scholar 

  85. Iwasaki, T., Matsunaga, K.: Nitric oxide-associated vasorelaxing effect of an anti-ulcer agent, benexate hydrochloride betadex. Drug. Dev. Res. 36, 13–19 (1995)

    CAS  Google Scholar 

  86. Hori, Y., Odaguchi, K., Jyoyama, H., Yasui, K., Mizui, T.: Differential effect of benexate hydrochloride betadex on prostaglandin levels in stomach and inflammatory sites in rats. Jpn. J. Pharmacol. 72, 183–190 (1996)

    CAS  PubMed  Google Scholar 

  87. Muranushi, N., Yoshida, M., Kinoshita, H., Hirose, F., Fukuda, T., Doteuchi, M., Yamada, H.: Studies of benexate CD: effect of inclusion compound formation on the antiulcer activity of benexate, the effective ingredient of benexate CD. Folia Pharmacol. Jpn. 91, 377–383 (1988)

    CAS  Google Scholar 

  88. Banarjee, R., Bhatt, P.M., Ravindra, N.V., Desiraju, G.R.: Saccharin Salts of Active Pharmaceutical Ingredients, Their Crystal Structure, and Increased Water Solubilities. Cryst. Growth Des. 5, 2299–2309 (2005)

    Google Scholar 

  89. Putra, O.D., Umeda, D., Fujita, E., Haraguchi, T., Uchida, T., Yonemochi, E., Uekusa, H.: Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics 10(64) (2018)

    Google Scholar 

  90. Cattopadhyay, S., Raychaudhuri, U., Chakraborty, R.: Artificial sweeteners—a review. J. Food Sci. Technol. 51, 611–621 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Uekusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Putra, O.D., Uekusa, H. (2020). Pharmaceutical Multicomponent Crystals: Structure, Design, and Properties. In: Sakamoto, M., Uekusa, H. (eds) Advances in Organic Crystal Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5085-0_9

Download citation

Publish with us

Policies and ethics