Abstract
Kinetic assembly is an important method for obtaining desired materials in chemical synthesis and material sciences. However, the application of this strategy to porous coordination networks has been limited. We highlight the kinetic assembly of porous coordination networks, which promote the production of interactive pore sites. These sites can activate or stabilize different guest molecules. The properties of interactive pores are exemplified by iodine chemisorption and small sulfur encapsulation. Using the interactive feature of these pores, we were able to trap small sulfur allotropes, such as S2, cyclo-S3, bent-S3, and S6, demonstrating their importance for the stabilization of unusual elemental species. Furthermore, several reactive elemental allotropes could also be incorporated into the interactive pores. Herein, we address the important aspects of creating interactive pore sites by kinetic assembly of porous coordination networks and present detailed case-by-case studies of small allotrope encapsulation.
Keywords
- Porous coordination network
- Kinetic assembly
- Unstable small sulfur species
- Elemental allotropes
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Dichtel, W.R., Miljanić, O.Š., Zhang, W., Spruell, J.M., Patel, K., Aprahamian, I., Heath, J.R., Stoddart, J.F.: Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds. Acc. Chem. Res. 41, 1750–1761 (2008)
Dickson, A., Brooks III, C.L.: Native states of fast-folding proteins are kinetic traps. J. Am. Chem. Soc. 135, 4729–4734 (2013)
Hua, Q.X., Gozani, S.N., Chance, R.E., Hoffmann, J.A., Frank, B.H., Weiss, M.A.: Structure of a protein in a kinetic trap. Nat. Struct. Biol. 2, 129–138 (1995)
Cheetham, A.K., Rao, C.N., Feller, R.F.: Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 46, 4780–4795 (2006)
Zhu, Y., Hua, Z., Zhou, J., Wang, L., Zhao, J., Gong, Y., Wu, W., Ruan, M., Shi, J.: Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chem. Eur. J. 17, 14618–14627 (2011)
Wang, Y., Gao, X., Xiao, Y., Zhao, Q., Yang, J., Yan, Y., Huang, J.: Temperature dependent coordinating self-assembly. Soft Matter 11, 2806–2811 (2015)
Zhong, Q.Z., Li, S., Chen, J., Xie, K., Pan, S., Richardson, J.J., Caruso, F.: Oxidation-mediated kinetic strategies for engineering metal-phenolic networks. Angew. Chem. Int. Ed. 58, 12563–12568 (2019)
Michele, L.D., Varrato, F., Kotar, J., Nathan, S.H., Foffi, G., Eiser, E.: Multistep kinetic self-assembly of DNA-coated colloids. Nat. Commun. 4, 2007 (2013)
Batten, S.R., Robson, R.: Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998)
Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keefe, M., Yaghi, O.M.: Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001)
Kitagawa, S., Kitaura, R., Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004)
Kitagawa, S., Uemura, K.: Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 34, 109–119 (2005)
Bradshaw, D., Claridge, J.B., Cussen, E.J., Prior, T.J., Rosseinsky, M.J.: Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005)
Kawano, M., Fujita, M.: Direct observation of crystalline-state guest exchange in coordination networks. Coord. Chem. Rev. 251, 2592–2605 (2007)
Férey, G.: Hybrid porous solids: past, present, future. Chem. Rev. 37, 191–214 (2008)
Furukawa, H., Cordova, K.E., O’Keefe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)
Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013)
Hoskins, B.F., Robson, R.: Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 5962–5964 (1989)
Hoskins, B.F., Robson, R.: Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4ʺ,4′′′-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J. Am. Chem. Soc. 112, 1546–1554 (1990)
Fujita, M., Kwon, Y.J., Washizu, S., Ogura, K.: Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994)
Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)
Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S.: Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)
Riou, D., Serre, C., Férey, G.: Composite microporous compounds (MIL-n): II. Hydrothermal synthesis and ab initio resolution by X-ray powder diffraction of MIL-5: a vanadodiphosphonate with a three-dimensional neutral framework. J. Solid. State. Chem. 141, 89–93 (1998)
Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)
Zhang, J., Wojtas, L., Larsen, R.W., Eddaoudi, M., Zaworotko, M.J.: Temperature and concentration control over interpenetration in a metal–organic material. J. Am. Chem. Soc. 131, 17040–17041 (2009)
Bara, D., Wilson, C., Mörtel, M., Khusniyarov, M.M., Ling, S., Slater, B., Sproules, S., Forgan, R.S.: Kinetic control of interpenetration in Fe-biphenyl-4,4′-dicarboxylate metal-organic frameworks by coordination and oxidation modulation. J. Am. Chem. Soc. 141, 8346–8357 (2019)
Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J.E., Tang, C.C., Allan, D.R., Rizkallah, P.J., Hubberstey, P., Champness, N.R., Thomas, K.M., Blake, A.J., Schröder, M.: A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710–716 (2012)
Yu, T., Wang, S., Li, X., Gao, X., Zhou, C., Cheng, J., Li, B., Li, J., Chang, J., Hou, H., Liu, Z.: Roles of temperature, solvent, M/L ratios and anion in preparing complexes containing a Himta ligand. CrystEngComm 18, 1350–1362 (2016)
De, D., Neogi, S., Bharadwaj, P.K.: Stoichiometry controlled structural variation in three-dimensional Zn(II)–frameworks: single-crystal to single-crystal transmetalation and selective CO2 adsorption. Cryst. Growth Des. 16, 5238–5246 (2016)
Wee, L.H.H., Meledina, M., Turner, S., Van Tendeloo, G., Zhang, K., Rodriguez-Albelo, L.M., Masala, A., Bordiga, S., Jiang, J., Navarro, J.A.R., Kirschhock, C.E.A., Martens, J.A.: 1D–2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J. Am. Chem. Soc. 139, 819–828 (2017)
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R.E., Suckert, S., Näther, C.: Thermodynamically metastable thiocyanato coordination polymer that shows slow relaxations of the magnetization. Inorg. Chem. 54, 2893–2901 (2015)
Forster, P.M., Burbank, A.R., Livage, C., Férey, G., Cheetham, A.K.: The role of temperature in the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates. Chem. Commun. 4, 368–369 (2004)
Näther, C., Bhosekar, G., Jess, I.: Preparation of stable and metastable coordination compounds: insight into the structural, thermodynamic, and kinetic aspects of the formation of coordination polymers. Inorg. Chem. 46, 8079–8087 (2007)
Zhang, J.P., Huang, X.C., Chen, X.M.: Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 38, 2385–2396 (2009)
Nagarkar, S.S., Chaudhari, A.K., Ghosh, S.K.: Role of temperature on framework dimensionality: supramolecular isomers of Zn3(RCOO)8 based metal organic frameworks. Cryst. Growth Des. 12, 572–576 (2012)
Manna, B., Chaudhari, A.K., Joarder, B., Karmakar, A., Ghosh, S.K.: Dynamic structural behavior and anion-responsive tunable luminescence of a flexible cationic metal–organic framework. Angew. Chem. Int. Ed. 52, 998–1002 (2013)
Bernini, M.C., de la Pena-O’Shea, V.A., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E.V., Narda, G.E., Illas, F., Monge, M.Á.: Thermodynamic and kinetic control on the formation of two novel metal-organic frameworks based on the Er(III) ion and the asymmetric dimethylsuccinate ligand. Inorg. Chem. 49, 5063–5071 (2010)
Gándara, F., de la Pena-O’Shea, V.A., Illas, F., Snejko, N., Proserpio, D.M., Gutiérrez-Puebla, E., Monge, M.A.: Three lanthanum MOF polymorphs: insights into kinetically and thermodynamically controlled phases. Inorg. Chem. 48, 4707–4713 (2009)
Dikhtiarenko, A., Serra-Crespo, P., Castellanos, S., Pustovarenko, A., Mendoza-Meroño, R., Garcia-Granda, S., Gascon, J.: Temperature-dependent supramolecular isomerism of lutetium-aminoterephthalate metal-organic frameworks: synthesis, crystallography, and physical properties. Cryst. Growth. Des. 16, 5636–5645 (2016)
Martí-Rujas, J., Kawano, M.: Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis. Acc. Chem. Res. 46, 493–505 (2013)
Kitagawa, H., Ohtsu, H., Kawano, M.: Kinetic assembly of a thermally stable porous coordination network based on labile CuI units and the visualization of I2 sorption. Angew. Chem. Int. Ed. 52, 12395–12399 (2013)
Kawano, M., Haneda, T., Hashizume, D., Izumi, F., Fujita, M.: A selective instant synthesis of a coordination network and its ab initio powder structure determination. Angew. Chem. Int. Ed. 47, 1269–1271 (2008)
Biradha, K., Fujita, M.: A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew. Chem. Int. Ed. 41, 3392–3395 (2002)
Ohara, K., Martí-Rujas, J., Haneda, T., Kawano, M., Hashizume, D., Izumi, F., Fujita, M.: Formation of a thermally stable, porous coordination network via a crystalline-to-amorphous-to-crystalline phase transition. J. Am. Chem. Soc. 131, 3860–3861 (2009)
Martí-Rujas, J., Islam, N., Hashizume, D., Izumi, F., Fujita, M., Kawano, M.: Dramatic structural rearrangements in porous coordination networks. J. Am. Chem. Soc. 133, 5853–5860 (2011)
Ohtsu, H., Bennett, T.D., Kojima, T., Keen, D.A., Niwa, Y., Kawano, M.: Amorphous–amorphous transition in a porous coordination polymer. Chem. Commun. 53, 7060–7063 (2017)
Bennett, T.D., Goodwin, A.L., Dove, M.T., Keen, D.A., Tucker, M.G., Barney, E.R., Soper, A.K., Bithell, E.G., Tan, J.C., Cheetham, A.K.: Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 104, 115503 (2010)
Bennett, T.D., Cheetham, A.K.: Amorphous metal-organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014)
Bennett, T.D., Tan, J.C., Yue, Y., Baxter, E., Ducati, C., Terrill, N.J., Yeung, H.H.M., Zhou, Z., Chen, W., Henke, S., Cheetham, A.K., Greaves, G.N.: Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015)
Martí-Rujas, J., Matsushita, Y., Izumi, F., Fujita, M., Kawano, M.: Solid–liquid interface synthesis of microcrystalline porous coordination networks. Chem. Commun. 46, 6515–6517 (2010)
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G.: The halogen bond. Chem. Rev. 116, 2478–2601 (2016)
Resnati, G., Boldyreva, E., Bombicz, P., Kawano, M.: Supramolecular interactions in the solid state. IUCrJ 2, 675–690 (2015)
Takaoka, K., Kawano, M., Ozeki, T., Fujita, M.: Crystallographic observation of an olefin photodimerization reaction that takes place via thermal molecular tumbling within a self-assembled host. Chem. Commun. 15, 1625–1627 (2006)
Ohmori, O., Kawano, M., Fujita, M.: A two-in-one crystal: uptake of two different guests into two distinct channels of a biporous coordination network. Angew. Chem. Int. Ed. 44, 1962–1964 (2005)
Ohmori, O., Kawano, M., Fujita, M.: Construction of biporous coordination networks via π–π interaction. CrystEngComm 7, 255–259 (2005)
Kawano, M., Kawamichi, T., Haneda, T., Kojima, T., Fujita, M.: The modular synthesis of functional porous coordination networks. J. Am. Chem. Soc. 129, 15418–15419 (2007)
Kawamichi, T., Kodama, T., Kawano, M., Fujita, M.: Single-crystalline molecular flasks: chemical transformation with bulky reagents in the pores of porous coordination networks. Angew. Chem. Int. Ed. 47, 8030–8032 (2008)
Haneda, T., Kawano, M., Kawamichi, T., Fujita, M.: Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. J. Am. Chem. Soc. 130, 1578–1579 (2008)
Kawamichi, T., Inokuma, Y., Kawano, M., Fujita, M.: Regioselecitive Huisgen cycloaddition within porous coordination networks. Angew. Chem. Int. Ed. 49, 2375–2377 (2010)
Kawamichi, T., Haneda, T., Kawano, M., Fujita, M.: X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009)
Inokuma, Y., Kawano, M., Fujita, M.: Crystalline molecular flasks. Nat. Chem. 3, 349–358 (2011)
Ohtsu, H., Choi, W., Islam, N., Matsushita, Y., Kawano, M.: Selective trapping of labile S3 in a porous coordination network and the direct X-ray observation. J. Am. Chem. Soc. 135, 11449–11452 (2013)
Steudel, R., Eckert, B.: Solid sulfur allotropes. Top. Curr. Chem. 230, 1–79 (2003)
Steudel, R., Steudel, Y., Wong, M.W.: Speciation and thermodynamics of sulfur vapor. Top. Curr. Chem. 230, 117–134 (2003)
Meyer, B.: Elemental sulfur. Chem. Rev. 76, 367–388 (1976)
McCarthy, M.C., Thorwirth, S., Gottlieb, C.A., Thaddeus, P., Gupta, H., Stanton, J.F.: Rotational spectroscopy and equilibrium structures of S3 and S4. J. Chem. Phys. 123, 054326 (2005)
Ichikawa, M., Kimura, T., Fukuoka, A.: Stud. Surf. Sci. Catal. 60, 335–342 (1991)
Maleki, B., Salehabadi, H.: Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives. Eur. J. Chem. 4, 377–380 (2010)
Choi, W., Ohtsu, H., Matsushita, Y., Kawano, M.: Safe P4 reagent in a reusable porous coordination network. Dalton Trans. 45, 6357–6360 (2016)
Ohtsu, H., Kawano, M.: Br2 induced oxidative pore modification of a porous coordination network. Dalton Trans. 45, 489–493 (2016)
Lang, J.P., Xu, Q.F., Yuan, R.X., Abrahams, B.F.: {[WS4Cu4(4,4ʹ-bpy)4][WS4Cu4I4(4,4ʹ-bpy)2]}∞—an unusual 3D porous coordination polymer formed from the preformed cluster [Et4N]4[WS4Cu4I6]. Angew. Chem. Int. Ed. 43, 4741–4745 (2004)
Holzer, W., Murphy, W.F., Bernstein, H.J.: Resonance Raman effect and resonance fluorescence in halogen gases. J. Chem. Phys. 52, 399–407 (1970)
Congeduti, A., Nardone, M., Postorino, P.: Polarized Raman spectra of a single crystal of iodine. Chem. Phys. 256, 117–123 (2000)
Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)
El-Sheshtawy, H.S., Bassil, B.S., Assaf, K.I., Kortz, U., Nau, W.M.: Halogen bonding inside a molecular container. J. Am. Chem. Soc. 134, 19935–19941 (2012)
Ohtsu, H., Kawano, M.: Kinetic assembly of coordination networks. Chem. Commun. 53, 8818–8829 (2017)
Hathaway, B.J.: In: Wilkinson, G., Gillard, R.D., McCleverty, J.A. (eds.) Comprehensive Coordination Chemistry, vol. 5, pp. 533–774. Pergamon, Oxford (1987)
Ohara, K., Yamaguchi, K.: Cold-spray ionization mass spectrometric detection of a coordination oligomer. Anal. Sci. 28, 635–637 (2012)
Allcock, H.R., Siegel, L.A.: Phosphonitrilic compounds. III. Molecular inclusion compounds of tris(o-phenylenedioxy)phosphonitrile trimer. J. Am. Chem. Soc. 86, 5140–5144 (1964)
Hertzsch, T., Budde, F., Weber, E., Hulliger, J.: Supramolecular-wire confinement of I2 molecules in channels of the organic zeolite tris(o-phenylenedioxy)cyclotriphosphazenephonitrile trimer. Angew. Chem. Int. Ed. 41, 2281–2284 (2002)
Kitagawa, H., Ohtsu, H., Cruz-Cabeza, A.J., Kawano, M.: Isolation and evolution of labile sulphur allotropes via kinetic encapsulation in interactive porous networks. IUCrJ 3, 232–236 (2016)
Flemming, B., Wolczanski, P.T., Hoffmann, R.: Transition metal complexes of cyclic and open ozone and thiozone. J. Am. Chem. Soc. 127, 1278–1285 (2005)
Mück, L.A., Lattanzi, V., Throwirth, S., McCarthy, M.C., Gauss, J.: Cyclic SiS2: a new perspective on the walsh rules. Angew. Chem. Int. Ed. 51, 3695–3698 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Ohtsu, H., Usov, P.M., Kawano, M. (2020). Kinetic Assembly of Porous Coordination Networks Leads to Trapping Unstable Elemental Allotropes. In: Sakamoto, M., Uekusa, H. (eds) Advances in Organic Crystal Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5085-0_12
Download citation
DOI: https://doi.org/10.1007/978-981-15-5085-0_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-5084-3
Online ISBN: 978-981-15-5085-0
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)