Skip to main content

One-Dimensional/One-Dimensional Analogue TMOs for Advanced Batteries

  • Chapter
  • First Online:
One-dimensional Transition Metal Oxides and Their Analogues for Batteries

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 259 Accesses

Abstract

Transition metal oxides (TMOs) have a characteristic nature, including short-distance interactions between ions and carriers, rapid ionic-transport channels, and unique combinations of redox chemistry. Strikingly, due to these properties, TMOs have had great effects on the successful implementation of miscellaneous batteries. This chapter provide a comprehensive review of a variety of 1D/1D analogue–TMOs in batteries, including, titanium oxides, vanadium oxides, manganese oxides, iron oxides, cobalt oxides, nickel oxides, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5(3):1700592

    Article  Google Scholar 

  2. Chen J, Song W, Hou H, Zhang Y, Jing M, Jia X, Ji X (2015) Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 25(43):6793–6801. https://doi.org/10.1002/adfm.201502978

    Article  CAS  Google Scholar 

  3. Aravindan V, Jinesh KB, Prabhakar RR, Kale VS, Madhavi S (2013) Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy 2(5):720–725

    Article  CAS  Google Scholar 

  4. Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7(7):6001–6006

    Article  CAS  PubMed  Google Scholar 

  5. Hu YY, Liu Z, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu X, Wiaderek KM, Du LS (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12(12):1130–1136

    Article  CAS  PubMed  Google Scholar 

  6. Zhang M, Li Y, Uchaker E, Candelaria S, Shen L, Wang T, Cao G (2013) Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy 2(5):769–778

    Article  CAS  Google Scholar 

  7. Zhu C, Xia X, Liu J, Fan Z, Chao D, Zhang H, Fan HJ (2014) TiO2 nanotube@SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy 4:105–112. https://doi.org/10.1016/j.nanoen.2013.12.018

    Article  CAS  Google Scholar 

  8. Liu Y, Elzatahry AA, Luo W, Lan K, Zhang P, Fan J, Wei Y, Wang C, Deng Y, Zheng G, Zhang F, Tang Y, Mai L, Zhao D (2016) Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 25:80–90. https://doi.org/10.1016/j.nanoen.2016.04.028

    Article  CAS  Google Scholar 

  9. Zhou G, Zhao Y, Zu C, Manthiram A (2015) Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249. https://doi.org/10.1016/j.nanoen.2014.12.029

    Article  CAS  Google Scholar 

  10. Zhao C, Yu C, Zhang M, Huang H, Li S, Han X, Liu Z, Yang J, Xiao W, Liang J, Sun X, Qiu J (2017) Ultrafine MoO2-Carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv Energy Mater 7(15):1602880. https://doi.org/10.1002/aenm.201602880

    Article  CAS  Google Scholar 

  11. Liu J, Wang J, Ku Z, Wang H, Chen S, Zhang L, Lin J, Shen ZX (2016) Aqueous rechargeable alkaline CoxNi2-xS2/TiO2 battery. ACS Nano 10(1):1007–1016. https://doi.org/10.1021/acsnano.5b06275

    Article  CAS  PubMed  Google Scholar 

  12. Ren W, Zheng Z, Luo Y, Chen W, Niu C, Zhao K, Yan M, Zhang L, Meng J, Mai L (2015) An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A 3(39):19850–19856. https://doi.org/10.1039/c5ta04643b

    Article  CAS  Google Scholar 

  13. An Q, Lv F, Liu Q, Han C, Zhao K, Sheng J, Wei Q, Yan M, Mai L (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14(11):6250–6256. https://doi.org/10.1021/nl5025694

    Article  CAS  PubMed  Google Scholar 

  14. Ding YL, Wen Y, Wu C, van Aken PA, Maier J, Yu Y (2015) 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett 15(2):1388–1394. https://doi.org/10.1021/nl504705z

    Article  CAS  PubMed  Google Scholar 

  15. Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15(1):565–573. https://doi.org/10.1021/nl504038s

    Article  CAS  PubMed  Google Scholar 

  16. Dong Y, Li S, Zhao K, Han C, Chen W, Wang B, Wang L, Xu B, Wei Q, Zhang L, Xu X, Mai L (2015) Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energ Environ Sci 8 (4):1267–1275. https://doi.org/10.1039/c5ee00036j

  17. Chen L, Guo X, Lu W, Chen M, Li Q, Xue H, Pang H (2018) Manganese monoxide-based materials for advanced batteries. Coordin Chem Rev 368:13–34

    Article  CAS  Google Scholar 

  18. Cai Z, Xu L, Yan M, Han C, He L, Hercule KM, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L (2015) Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett 15(1):738–744. https://doi.org/10.1021/nl504427d

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Wang Y, Jia D, Peng Z, Xia Y, Zheng G (2014) All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4. Nano Lett 14(2):1080–1084. https://doi.org/10.1021/nl4047834

    Article  CAS  PubMed  Google Scholar 

  20. Zhong M, Yang D, Xie C, Zhang Z, Zhou Z, Bu XH (2016) Yolk-Shell MnO@ZnMn2O4/N–C nanorods derived from alpha-MnO2/ZIF–8 as anode materials for lithium ion batteries. Small 12(40):5564–5571. https://doi.org/10.1002/smll.201601959

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with mno2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew Chem Int Edit 54(44):12886–12890. https://doi.org/10.1002/anie.201506972

    Article  CAS  Google Scholar 

  22. Rosenberg S, Hintennach A (2015) In situ formation of α–MnO2 nanowires as catalyst for sodium-air batteries. J Power Sources 274:1043–1048. https://doi.org/10.1016/j.jpowsour.2014.10.187

    Article  CAS  Google Scholar 

  23. Zhang L, Wu HB, Lou XW (2014) Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 4(4):1300958. https://doi.org/10.1002/aenm.201300958

    Article  CAS  Google Scholar 

  24. Ma J, Guo X, Yan Y, Xue H, Pang H (2018) FeOx-based materials for electrochemical energy storage. Adv Sci 5(6):1700986

    Article  Google Scholar 

  25. Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2(21):8048–8053. https://doi.org/10.1039/c4ta00200h

    Article  CAS  Google Scholar 

  26. Chen M, Liu J, Chao D, Wang J, Yin J, Lin J, Fan H, Shen Z (2014) Porous α–Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372. https://doi.org/10.1016/j.nanoen.2014.08.011

    Article  CAS  Google Scholar 

  27. Li R, Wang Y, Zhou C, Wang C, Ba X, Li Y, Huang X, Liu J (2015) Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv Funct Mater 25(33):5384–5394. https://doi.org/10.1002/adfm.201502265

    Article  CAS  Google Scholar 

  28. Wang X, Xu X, Niu C, Meng J, Huang M, Liu X, Liu Z, Mai L (2017) Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced k-ion full batteries. Nano Lett 17(1):544–550. https://doi.org/10.1021/acs.nanolett.6b04611

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Wei J, Li Q, Zheng S, Xu Y, Du P, Chen C, Zhao J, Xue H, Xu Q, Pang H (2018) Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv Funct Mater 28:1800886

    Article  Google Scholar 

  30. Shi Y, Pan X, Li B, Zhao M, Pang H (2018) Co3O4 and its composites for high-performance Li-ion batteries. Chem Eng J 343:427–446

    Article  CAS  Google Scholar 

  31. Li B, Gu P, Zhang G, Lu Y, Huang K, Xue H, Pang H (2017) Ultrathin nanosheet assembled Sn0.91Co0.19S2 nanocages with exposed (100) facets for high-performance lithium-ion batteries. Small 14(5):1702184

    Google Scholar 

  32. Yu J, Chen S, Hao W, Zhang S (2016) Fibrous-root-inspired design and lithium storage applications of a Co–Zn binary synergistic nanoarray system. ACS Nano 10(2):2500–2508. https://doi.org/10.1021/acsnano.5b07352

    Article  CAS  PubMed  Google Scholar 

  33. Cao K, Jiao L, Liu Y, Liu H, Wang Y, Yuan H (2015) Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv Funct Mater 25(7):1082–1089. https://doi.org/10.1002/adfm.201403111

    Article  CAS  Google Scholar 

  34. Lin X, Shang Y, Huang T, Yu A (2014) Carbon-free (Co, Mn)3O4 nanowires@Ni electrodes for lithium-oxygen batteries. Nanoscale 6(15):9043–9049. https://doi.org/10.1039/c4nr00292j

    Article  CAS  PubMed  Google Scholar 

  35. Lee H, Kim YJ, Lee DJ, Song J, Lee YM, Kim HT, Park JK (2014) Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium–oxygen batteries. J Mater Chem A 2(30):11891. https://doi.org/10.1039/c4ta01311e

    Article  CAS  Google Scholar 

  36. Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24(18):2630–2637. https://doi.org/10.1002/adfm.201303138

    Article  CAS  Google Scholar 

  37. Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405. https://doi.org/10.1002/adma.201405222

    Article  CAS  PubMed  Google Scholar 

  38. Gao G, Wu HB, Ding S, Lou XW (2015) Preparation of carbon-coated NiCo2O4@SnO2 hetero-nanostructures and their reversible lithium storage properties. Small 11(4):432–436. https://doi.org/10.1002/smll.201400152

    Article  CAS  PubMed  Google Scholar 

  39. Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energ Environ Sci 9(3):862–866. https://doi.org/10.1039/c5ee03772g

    Article  CAS  Google Scholar 

  40. Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk–shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5(21):1500981. https://doi.org/10.1002/aenm.201500981

    Article  CAS  Google Scholar 

  41. Shilpa S, Basavaraja BM, Majumder SB, Sharma A (2015) Electrospun hollow glassy carbon–reduced graphene oxide nanofibers with encapsulated ZnO nanoparticles: a free standing anode for Li-ion batteries. J Mater Chem A 3(10):5344–5351. https://doi.org/10.1039/c4ta07220k

    Article  CAS  Google Scholar 

  42. Xu G-L, Li Y, Ma T, Ren Y, Wang H-H, Wang L, Wen J, Miller D, Amine K, Chen Z (2015) PEDOT–PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18:253–264. https://doi.org/10.1016/j.nanoen.2015.10.020

    Article  CAS  Google Scholar 

  43. Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous Spinel Zn(x)Co(3-x)O(4) hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303

    Article  CAS  PubMed  Google Scholar 

  44. Zhan WW, Kuang Q, Zhou JZ, Kong XJ, Xie ZX, Zheng LS (2013) Semiconductor@metal-organic framework core–shell heterostructures: a case of ZnO@ZIF–8 nanorods with selective photoelectrochemical response. J Am Chem Soc 135 (5):1926

    Google Scholar 

  45. Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc 135(20):7394–7397

    Article  CAS  PubMed  Google Scholar 

  46. Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Edit 126(5):1428

    Article  Google Scholar 

  47. Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang HL, Jiang J, Zhang Q, Xie Y (2014) Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater 26(28):4783–4788

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Li QY, Xue HG, Pang H (2018) Fabrication of Cu2O-based materials for lithium-ion batteries. Chemsuschem 11(10):1581–1599

    Article  CAS  PubMed  Google Scholar 

  49. Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB (2014) Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv Mater 26(14):2273–2279, 2284. https://doi.org/10.1002/adma.201304469

  50. Ahmed B, Shahid M, Nagaraju DH, Anjum DH, Hedhili MN, Alshareef HN (2015) Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable Li ion battery anodes. ACS Appl Mater Inter 7(24):13154–13163. https://doi.org/10.1021/acsami.5b03395

    Article  CAS  Google Scholar 

  51. Wang C, Wu L, Wang H, Zuo W, Li Y, Liu J (2015) Fabrication and shell optimization of synergistic TiO2–MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv Funct Mater 25(23):3524–3533. https://doi.org/10.1002/adfm.201500634

    Article  CAS  Google Scholar 

  52. Kabtamu DM, Chen JY, Chang YC, Wang CH (2016) Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries. J Mater Chem A 4(29):11472–11480. https://doi.org/10.1039/c6ta03936g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, H., Zhang, G., Xiao, X., Xue, H. (2020). One-Dimensional/One-Dimensional Analogue TMOs for Advanced Batteries. In: One-dimensional Transition Metal Oxides and Their Analogues for Batteries. SpringerBriefs in Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-5066-9_4

Download citation

Publish with us

Policies and ethics