Skip to main content

Marine-Derived Fungi: Potential Candidates for Anticancer Compounds

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences
  • 503 Accesses

Abstract

Fungi form an integral component of marine ecosystem. They have been observed to play important ecological as well as economical roles. Marine-derived fungi from diverse marine habitats produce a range of metabolites exhibiting various activities having therapeutic and pharmaceutical importance. However, compared to their terrestrial counterparts, fungi from marine world are less explored. Among the metabolites produced by marine-derived fungi, many of them have the potential to modulate activity of enzymes playing key role in growth of tumor and metastasis also. This chapter focuses on anticancer compounds produced by marine-derived fungi associated with diverse habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400

    Article  CAS  Google Scholar 

  • Abdel-Lateff A, Klemke C, Kӧnig GM, Wright AD (2003) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708

    Article  CAS  PubMed  Google Scholar 

  • Alvi KA, Casey A, Nair BG (1998) Pulchellalactam: a CD45 protein tyrosine phosphatase inhibitor from the marine fungus Corollospora pulchella. J Antibiot (Tokyo) 51:515–517

    Article  CAS  Google Scholar 

  • Amagata T, Tanaka M, Yamada T, Chen YP, Minoura K, Numata A (2013) Additional cytotoxic substances isolated from the sponge-derived Gymnascella dankaliensis. Tetrahedron Lett 54(45):5960–5962

    Article  CAS  Google Scholar 

  • Asami Y, Jang JH, Soung NK, He L, Moon DO, Kim JW, Oh H, Muroi M, Osada H, Kim BY et al (2012) Protuboxepin a, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells. Bioorg Med Chem 20:3799–3806

    Article  CAS  PubMed  Google Scholar 

  • Blayney DW, Bazhenova L, Lloyd GK, Huang L, Mohanlal R (2016) Plinabulin, a novel small molecule that ameliorates chemotherapy-induced neutropenia, is administered on the same day of chemotherapy and has anticancer efficacy. Blood 128:2508

    Article  Google Scholar 

  • Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH, Dos Santos JA, de Azevedo DL, Otero IV, da Silva Yoshida AM, Feitosa VA (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Bringmann G, Lang G, Gulder TA, Tsuruta H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF (2005) The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain. Tetrahedron 61(30):7252–7265

    Article  CAS  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  PubMed  Google Scholar 

  • Burgess JG (2012) New and emerging analytical techniques for marine biotechnology. Curr Opin Biotechnol 23:29–33

    Article  CAS  PubMed  Google Scholar 

  • Chen WS, Hou JN, Guo YB, Yang HL, Xie CM, Lin YC, She ZG (2011) Bostrycin inhibits proliferation of human lung carcinoma A549 cells via downregulation of the PI3K/Akt pathway. J Exp Clin Cancer Res 30:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Gong MW, Peng ZF, Zhou T, Ying MG, Zheng QH, Liu QY, Zhang QQ (2014) The marine fungal metabolite, dicitrinone B, induces A375 cell apoptosis through the ROS-related caspase pathway. Mar Drugs 12:1939–1958

    Article  PubMed  PubMed Central  Google Scholar 

  • Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L (1998) Antibacterial activity of marine-derived fungi. Mycopathologia 143(3):135–138

    Article  PubMed  Google Scholar 

  • ClinicalTrials.gov. Plinabulin Available online: https://clinicaltrials.gov/ct2/results?cond=&term=plinabulin&cntry=&state=&city=&dist=&Search=Search. Accessed on 17 Mar 2019.

  • Du L, Li D, Zhu T, Cai S, Wang F, Xiao X, Gu Q (2009) New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 65:1033–1039

    Article  CAS  Google Scholar 

  • Du L, Feng T, Zhao B, Li D, Cai S, Zhu T, Wang F, Xiao X, Gu Q (2010a) Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot 63:165–170

    Article  CAS  Google Scholar 

  • Du L, Li D, Zhang G, Zhu T, Ai J, Gu Q (2010b) Novel carbon-bridged citrinin dimers from a volcano-ash derived fungus Penicillium citrinum and their cytotoxic and cell cycle arrest activities. Tetrahedron 66:9286–9290

    Article  CAS  Google Scholar 

  • Ebada SS, Fischer T, Hamacher A, Du FY, Roth YO, Kassack MU, Wang BG, Roth EH (2014) Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat Prod Res 28:776–781

    Article  CAS  PubMed  Google Scholar 

  • Ebel R (2010) Terpenes from marine-derived fungi. Mar Drug 8(8):2340–2368

    Article  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31(5):617–627

    Article  CAS  PubMed  Google Scholar 

  • Farag AM, Hassan SW, Beltagy EA, El-Shenawy MA (2015) Optimization of production of antitumor L-asparaginase by free and immobilized marine Aspergillus terreus. Egypt J Aquat Res 41(4):295–302

    Article  Google Scholar 

  • Farha AK, Hatha AM (2019) Bioprospecting potential and secondary metabolite profile of a novel sediment-derived fungus Penicillium sp. ArCSPf from continental slope of Eastern Arabian Sea. Mycology 10(2):109–117. https://doi.org/10.1080/21501203.2019.1572034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24(5):717

    Article  CAS  Google Scholar 

  • Gomes NM, Dethoup T, Singburaudom N, Gales L, Silva AMS, Kijjoa A (2012) Eurocristatine, a new diketopiperazine dimer from the marine sponge-associated fungus Eurotium cristatum. Phytochem Lett 5:717–720

    Article  CAS  Google Scholar 

  • Gomes NGM, Lefranc F, Kijjoa A, Kiss R (2015) Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs 13:3950–3991. https://doi.org/10.3390/md13063950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Cueto M, Jensen PR, Fenical W, Silverman RB (2007) Microsporins A and B: new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A. Tetrahedron 63:6535–6541

    Article  CAS  Google Scholar 

  • Gulland A (2014) Global cancer prevalence is growing at “alarming pace,” says WHO. BMJ 348:g1338

    Article  PubMed  Google Scholar 

  • Guo W, Peng J, Zhu T, Gu Q, Keyzers RA, Li D (2013) Sorbicillamines A-E, nitrogen-containing sorbicillinoids from the deep-sea-derived fungus Penicillium sp. F23-2. J Nat Prod 76:2106–2112

    Article  CAS  PubMed  Google Scholar 

  • Handayani D, Rasyid W, Rustini ZEN, Hertiani T (2018) Cytotoxic activity screening of fungal extracts derived from the west Sumatran marine sponge Haliclona fascigera to several human cell lines: Hela, WiDr, T47D and Vero. J Appl Pharm Sci 8(01):055–058

    CAS  Google Scholar 

  • Hassan SWM, Farag AM, Beltagy EA (2018) Purification, characterization and anticancer activity of L-asparaginase produced by marine Aspergillus terreus. J Pure Appl Microbiol 12(4):1845–1854. https://doi.org/10.22207/JPAM.12.4.19

    Article  CAS  Google Scholar 

  • Hayakawa Y, Hattori Y, Kawasaki T, Kanoh K, Adachi K, Shizuri Y, Shin-Ya K (2008) Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp. J Antibiot 61:365–371

    Article  CAS  Google Scholar 

  • Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Sun X, Lin S, Xiao Z, Li H, Bo D, She Z (2014) Xylanthraquinone, a new anthraquinone from the fungus Xylaria sp. 2508 from the South China Sea. Nat Prod Res 28:111–114

    Article  CAS  PubMed  Google Scholar 

  • Husain I, Sharma A, Kumar S, Malik F (2016) Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: in-vitro evaluation of cytotoxic potential against human myeloid leukemia HL-60 cells. PLoS One 11(2):e0148877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Sarma VV, Jones EB (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach. Fungal Diversity Press, Hong Kong, pp 172–204

    Google Scholar 

  • Izadpanah F, Homaei A, Fernandes P, Javadpour S (2018) Marine microbial L-asparaginase: biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol Res 208:99–112

    Article  CAS  Google Scholar 

  • Jiang GC, Lin YC, Zhou SN, Vrumoed LLP, Jones EBG (2000) Studies of the secondary metabolites of mangrove fungus no. 1403 from the South China Sea. Acta Sci Nat Univ Sunyatseni 39:68–72

    CAS  Google Scholar 

  • Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H (2013) Anti-inflammatory effect of neoechinulin A from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-κB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 18:13245–13259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemke C, Kehraus S, Wright AD, König GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67(6):1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2003) Marine ascomycetes from algae and animal hosts. Bot Mar 46(3):285–306

    Article  Google Scholar 

  • Koizumi Y, Arai M, Tomoda H, Omura S (2004) Oxaline, a fungal alkaloid, arrests the cell cycle in M phase by inhibition of tubulin polymerization. Biochim Biophys Acta 1693:47–55

    Article  CAS  PubMed  Google Scholar 

  • Lee SU, Asami Y, Lee D, Jang JH, Ahn JS, Oh H (2011) Protuboxepins A and B and protubonines A and B from the marine-derived fungus Aspergillus sp. SF-5044. J Nat Prod 74:1284–1287

    Article  CAS  PubMed  Google Scholar 

  • Li DL, Li XM, Li TG, Dang HY, Wang BG (2008) Dioxopiperazine alkaloids produced by the marine mangrove derived endophytic fungus Eurotium rubrum. Helv Chim Acta 91:1888–18936

    Google Scholar 

  • Li YX, Himaya SWA, Dewapriya P, Zhang C, Kim SK (2013a) Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar Drugs 11:5063–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CS, Li XM, Gao SS, Lu YH, Wang BG (2013b) Cytotoxic anthranilic acid derivatives from deep sea sediment derived fungus Penicillium paneum SD-44. Mar Drugs 11:3068–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv C, Qin W, Zhu T, Wei S, Hong K, Zhu W, Chen R, Huang C (2015) Ophiobolin O isolated from Aspergillus ustus induces G1 arrest of MCF-7 cells through interaction with AKT/GSK3beta/cyclin D1 signaling. Mar Drugs 13:431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaker A, Ahmad SAI (2013) Therapeutic potency of anticancer peptides derived from marine organisms. Int J Appl Sci 2:82–94

    Google Scholar 

  • McDonald LA, Abbanat DR, Barbieri LR, Beruan VS, Discafani CM, Greenstein M, Janota K, Korshalla JD, Lassota P, Tischler M et al (1999) Spiroxins, DNA cleaving antitumor antibiotics from a marine-derived fungus. Tetrahedron Lett 40:2489–2492

    Article  CAS  Google Scholar 

  • Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11(21):5014–5017

    Article  CAS  PubMed  Google Scholar 

  • Mohamed IE, Kehraus S, Krick A, König GM, Kelter G, Maier A, Fiebig HH, Kalesse M, Malek NP, Gross H (2010) Mode of action of epoxyphomalins a and b and characterization of related metabolites from the marine-derived fungus Paraconiothyrium sp. J Nat Prod 73:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Mohanlal RW, Lloyd K, Huang L, Bazhenova L (2017) Plinabulin as a novel small molecule clinical stage immune-oncology agent for NSCLC. J Clin Oncol 35:139

    Article  Google Scholar 

  • Mohanlal RW, Lloyd K, Huang L (2018) Plinabulin, a novel small molecule clinical stage IO agent with anti-cancer activity, to prevent chemo–induced neutropenia and immune related AEs. J Clin Oncol 36:126

    Article  Google Scholar 

  • Murali TS (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2:147–155

    Google Scholar 

  • Myobatake Y, Takeuchi T, Kuramochi K, Kuriyama I, Ishido T, Hirano K, Sugawara F, Yoshida H, Mizushina Y (2012) Pinophilins A and B, inhibitors of mammalian A-, B-, and Y-family DNA polymerases and human cancer cell proliferation. J Nat Prod 75:135–141

    Article  CAS  PubMed  Google Scholar 

  • Nageswara S, Guntuku GS, Tadimalla P (2014) Production of L-asparaginase by solid state fermentation using marine fungus. BMR Biochem 1(1):1–9

    Google Scholar 

  • Namikoshi M, Kobayashi H, Yoshimoto T, Hosoya T (1997) Phomopsidin, a new inhibitor of microtubule assembly produced by Phomopsis sp. isolated from coral reef in Pohnpei. J Antibiot (Tokyo) 50:890–892

    Article  CAS  Google Scholar 

  • Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S, Akano K (2000) Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem Pharm Bull 48:1452–1457

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VT, Lee JS, Qian ZJ, Li YX, Kim KN, Heo SJ, Jeon YJ, Park WS, Choi IW, Je JY et al (2014) Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 12:69–87

    Article  CAS  Google Scholar 

  • Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom ST (2006) NPI–2358 is a tubulin–depolymerizing agent: in–vitro evidence for activity as a tumor vascular–disrupting agent. Anti-Cancer Drugs 17:25–31

    Article  CAS  PubMed  Google Scholar 

  • Numata A, Iritani M, Yamada T, Minoura K, Matsumura E, Yamori T, Tsuruo T (1997) Novel antitumor metabolites produced by a fungal strain from a sea hare. Tetrahedron Lett 38:8215–8218

    Article  CAS  Google Scholar 

  • Osterhage C (2001) Isolation, structure determination and biological activity assessment of secondary metabolites from marine-derived fungi. (Doctoral dissertation)

    Google Scholar 

  • Osterhage C, Kaminsky R, Kӧnig GM, Wright AD (2000) Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417

    Article  CAS  PubMed  Google Scholar 

  • Paterson I, Anderson EA (2005) The renaissance of natural products as drug candidates. Science 310:451

    Article  PubMed  Google Scholar 

  • Pereira RB, Evdokimov NM, Lefranc F, Valentão P, Kornienko A, Pereira DM, Andrade PB, Gomes NGM (2019) Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar Drugs 17:329. https://doi.org/10.3390/md17060329

    Article  CAS  PubMed Central  Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers:19–35

    Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183(1):113–131

    Article  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  CAS  PubMed  Google Scholar 

  • Roller C, Maddalo D (2013) The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front Pharmacol 4:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V (2017) An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule Cancer drugs. Molecules 22(7):1037

    Article  CAS  PubMed Central  Google Scholar 

  • Russo P, Bufalo AD, Fini M (2015) Deep sea as a source of novel-anticancer drugs: update on discovery and preclinical/clinical evaluation in a systems medicine perspective. Excli J 14:228–236

    PubMed  PubMed Central  Google Scholar 

  • Saleem M, Shaiq Ali M, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Sawadogo WR, Schumacher M, Teiten MH, Cerella C, Dicato M, Diederich M (2013) A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 18:3641–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar M, Poomalai S, Gunasekaran M, Mani P, Krishnamurthy A (2015) Bioactive compounds from marine yeast inhibits lung cancer. J Appl Pharm Sci 5(2):007–015

    CAS  Google Scholar 

  • Shang Z, Li X, Meng L, Li C, Gao S, Huang C, Wang B (2012) Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chin J Oceanol Limnol 30:305–314

    Article  CAS  Google Scholar 

  • Shenolikar S (2014) Dangerous liaisons: flirtations between oncogenic BRAF and GRP78 in drug-resistant melanomas. J Clin Invest 124:973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Kim M (2016) Marine natural flora: a potent source of anticancer metabolites. Indian J Geo Mar Sci 45(11):1412–1421

    Google Scholar 

  • Smetanina OF, Kalinovsky AI, Khudyakova YV, Pivkin MV, Dmitrenok PS, Fedorov SN, Ji H, Kwak JY, Kuznetsova TA (2007) Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge. J Nat Prod 70:906–909

    Article  CAS  PubMed  Google Scholar 

  • Trisuwan K, Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayroj J (2010) Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J Nat Prod 73:1507–1511

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi JI (2004) Citrinadin A, a novel pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org Lett 6(18):3087–3089

    Article  CAS  PubMed  Google Scholar 

  • Usman A (2015) Seeking efficacy in L-asparaginase to combat acute lymphoblastic leukemia (ALL): a review. Afr J Pharm Pharmacol 9(32):793–805

    Article  CAS  Google Scholar 

  • Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresour Technol 101(7):2565–2567

    Article  CAS  PubMed  Google Scholar 

  • Vala AK (2018) On the extreme tolerance and removal of arsenic by a facultative marine fungus Aspergillus sydowii. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, New Delhi, pp 37–44

    Google Scholar 

  • Vala AK, Dave BP (2015) Explorations on marine-derived fungi for L-Asparaginase–enzyme with anticancer potentials. Curr Chem Biol 9(1):66–69

    Article  CAS  Google Scholar 

  • Vala AK, Sutariya V (2012) Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur J Microbiol 5(4):542–545

    Article  Google Scholar 

  • Vala AK, Anand N, Bhatt PN, Joshi HV (2004) Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli. Mar Pollut Bull 48(9–10):983–985

    Article  CAS  PubMed  Google Scholar 

  • Vala AK, Trivedi HB, Dave BP (2016) Marine-derived fungi: potential candidates for fungal nanobiotechnology. In: Advances and Applications through fungal nanobiotechnology. Springer, Cham, pp 47–69

    Google Scholar 

  • Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP (2018a) Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46

    Article  CAS  PubMed  Google Scholar 

  • Vala AK, Dudhagara DR, Dave BP (2018b) Process-centric and data-centric strategies for enhanced production of L-asparaginase—an anticancer enzyme, using marine-derived Aspergillus niger. J Chemomet 32(7):e3024

    Google Scholar 

  • Vala AK, Sachaniya B, Dave BP (2019) Marine fungal white biotechnology: an ecological and industrial perspective. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Springer, Cham, pp 483–503. https://doi.org/10.1007/978-3-030-10480-1_15

    Chapter  Google Scholar 

  • Verma AK (2011) Potential of marine-derived fungi and their enzymes in bioremediation of industrial pollutants. Doctoral dissertation, Goa University

    Google Scholar 

  • Vinothkumar S, Parameswaran PS (2013) Recent advances in marine drug research. Biotechnol Adv 31:1826–1845

    Article  CAS  PubMed  Google Scholar 

  • Westin SN, Herzog TJ, Coleman RL (2013) Investigational agents in development for the treatment of ovarian cancer. Investig New Drugs 31:213–229

    Article  CAS  Google Scholar 

  • Wijesekara I, Li XY, Uo TS, van Ta Q, Ngo DH, Kim SK (2013) Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin a from marine-derived fungus Microsporum sp. Process Biochem 48:68–72

    Article  CAS  Google Scholar 

  • Wijesekara I, Zhang C, Ta QV, Vo TS, Li YX, Kim SK (2014) Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol Res 169:255–261

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z et al (2010) SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br J Pharmacol 159:689–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Gessner G, Groth I, Lange C, Christner A, Bruhn T, Deng Z, Li X, Heinemann SH, Grabley S et al (2007) Shearinines D–K, new indole triterpenoids from an endophytic Penicillium sp. (strain HKI0459) with blocking activity on large-conductance calcium-activated potassium channels. Tetrahedron 63:435–444

    Article  CAS  Google Scholar 

  • Xu J, Nakazawa T, Ukai K, Kobayashi H, Mangindaan REP, Wewengkang DS, Rotinsulu H, Namikoshi M (2008) Tetrahydrobostrycin and 1-deoxytetrahydrobostrycin, two new hexahydroanthrone derivatives, from a marine-derived fungus Aspergillus sp. J Antibiot 61:415–419

    Article  CAS  Google Scholar 

  • Yamada T, Iwamoto C, Yamagaki N, Yamanouchi T, Minoura K, Yamori T, Uehara Y, Andoh T, Umemura K, Numata A (2002) Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron 58:479–487

    Article  CAS  Google Scholar 

  • Yamada T, Iwamoto C, Yamagaki N, Yamanouchi T, Minoura K, Hagishita S, Numata A (2004) Leptosins O-S, cytotoxic metabolites from a strain of Leptosphaeria sp. isolated from a marine alga. Heterocycles 63:641–653

    Article  CAS  Google Scholar 

  • Yamada T, Iritani M, Ohishi H, Tanaka K, Minoura K, Doi M, Numata A (2007) Pericosines, antitumour metabolites from the sea hare-derived fungus Periconia byssoides. Structures and biological activities. Org Biomol Chem 5:3979–3986

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara M, Sasaki-Takahashi N, Sugahara T, Yamamoto S, Shinomi M, Yamashita I, Hayashida M, Yamanoha B, Numata A, Yamori T et al (2005) Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 96:816–824

    Article  CAS  PubMed  Google Scholar 

  • Zheng CJ, Sohn MJ, Lee S, Kim WG (2013) Meleagrin, a new FabI inhibitor from Penicillium chryosogenum with at least one additional mode of action. PLoS One 8:e78922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Head, Department of Life Sciences, Dr. Bharatsinh M Gohil is thankfully acknowledged for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana K. Vala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vala, A.K. (2020). Marine-Derived Fungi: Potential Candidates for Anticancer Compounds. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_8

Download citation

Publish with us

Policies and ethics