Skip to main content

Marine-Microalgae as a Potential Reservoir of High Value Nutraceuticals

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Among the innovative entries in the nutrition supplements area, a vital place must be allocated to nutraceuticals encompassing marine microalgae, currently accounting for a great and promptly growing market. The current market values of these marine microalgal-derived bioactive compounds are extremely high. The major products commercially explored include carotenoids, β-carotene, astaxanthin, polyunsaturated fatty acids, polysaccharides, vitamins, sterols, and biologically active molecules. These biomolecules and metabolites possess antibiotic, antiviral, anti-inflammatory, anticancer, and neuroprotective activities. The bioactive compounds have wide array of activities such as inhibition, transcription, activation of key enzymes and transportation, which can revamp several metabolic pathways. This chapter describes the available marine microalgal-derived nutraceuticals and recent research accomplished toward the characterization of bioactive metabolites and use of marine microalgae-based products for various therapeutic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambati R, Phang SM, Ravi S, Aswathanarayana R (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs 12(1):128–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Single cell oils. AOCS Press, pp 75–96

    Google Scholar 

  • Barrow C, Shahidi F (2007) Marine nutraceuticals and functional foods. CRC Press

    Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res 23(3):229–241

    Article  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7(1):3–15

    Article  CAS  Google Scholar 

  • Borowitzka MA (2010) Carotenoid production using microorganisms. In: Single cell oils. AOCS Press, pp 225–240

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989) β-carotene (provitamin A) production with algae. In: Biotechnology of vitamins, pigments and growth factors. Springer, Dordrecht, pp 15–26

    Chapter  Google Scholar 

  • Cadoret JP, Garnier M, Saint-Jean B (2012) Microalgae, functional genomics and biotechnology. Adv Bot Res 64:285–341. Academic

    Article  Google Scholar 

  • Caroprese M, Albenzio M, Ciliberti MG, Francavilla M, Sevi A (2012) A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep. Vet Immunol Immunopathol 150(1–2):27–35

    Google Scholar 

  • Ciferri O, Tiboni O (1985) The biochemistry and industrial potential of Spirulina. Annu Rev Microbiol 39(1):503–526

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Barrocal VM, Lucas S, González-Benito G, García-Cubero MT (2015) Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process 94:306–312

    Article  CAS  Google Scholar 

  • Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25(4):155–171

    Article  CAS  Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8(2):190–209

    Article  CAS  PubMed  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64(6):848–854

    Article  CAS  PubMed  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34(7):1159–1179

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170

    Article  Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16(9):389–406

    Article  CAS  Google Scholar 

  • El-Baky HH, El-Baz FK, El-Baroty GS (2003) Spirulina species as a source of carotenoids and a-tocopherol and its anticarcinoma factors. Biotechnology 2(3):222–240

    Article  Google Scholar 

  • Ercin AE, Aldaya MM, Hoekstra AY (2012) The water footprint of soy milk and soy burger and equivalent animal products. Ecol Indic 18:392–402

    Article  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Fábregas J, Arán J, Morales ED, Lamela T, Otero A (1997) Modification of sterol concentration in marine microalgae. Phytochemistry 46(7):1189–1191

    Article  Google Scholar 

  • Fernández-Sevilla JM, Fernández FA, Grima EM (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Gellenbeck KW (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications – what do manufacturers need to know? J Appl Phycol 24(3):309–313

    Article  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48(5):1057–1063

    Article  PubMed  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini Tafreshi A, Shariati M (2009) Dunaliella biotechnology: methods and applications. J Appl Microbiol 107(1):14–35

    Article  CAS  PubMed  Google Scholar 

  • Huerlimann R, Steinig EJ, Loxton H, Zenger KR, Jerry DR, Heimann K (2014) Effects of growth phase and nitrogen starvation on expression of fatty acid desaturases and fatty acid composition of Isochrysis aff. galbana (TISO). Gene 545(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34(6–7):633

    Article  CAS  Google Scholar 

  • Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10(2):e0118985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid MN, Shameel M, Ahmad VU, Shahzad S, Leghari SM (2010) Studies on the bioactivity and phycochemistry of Microcystis aeruginosa (Cyanophycota) from Sindh. Pak J Bot 42(4):2635–2646

    Google Scholar 

  • Khoeyi ZA, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20(1):41–49

    Article  CAS  Google Scholar 

  • Kim M, Yim JH, Kim SY, Kim HS, Lee WG, Kim SJ, Kang PS, Lee CK (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antivir Res 93(2):253–259

    Article  CAS  PubMed  Google Scholar 

  • Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T (2009) Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 84(5):657–661

    Article  CAS  Google Scholar 

  • Klein BC, Walter C, Lange HA, Buchholz R (2012) Microalgae as natural sources for antioxidative compounds. J Appl Phycol 24(5):1133–1139

    Article  CAS  Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and outlook. In: Carbohydrates-comprehensive studies on glycobiology and glycotechnology. IntechOpen

    Google Scholar 

  • Kyle DJ, Boswell KD, Gladue RM, Reeb SE (1992) Designer oils from microalgae as nutritional supplements. In: Biotechnology and nutrition: proceedings of the third international symposium. Butterworth-Heinemann, Boston, p 451

    Chapter  Google Scholar 

  • Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26(11):631–638

    Article  CAS  PubMed  Google Scholar 

  • Le P, Desbois A (2017) Antibacterial effect of eicosapentaenoic acid against Bacillus cereus and Staphylococcus aureus: killing kinetics, selection for resistance, and potential cellular target. Mar Drugs 15(11):334

    Article  CAS  PubMed Central  Google Scholar 

  • Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9(7):1273–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8(9):1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265

    Article  CAS  PubMed  Google Scholar 

  • Mendes A, Reis A, Vasconcelos R, Guerra P, da Silva TL (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21(2):199–214

    Article  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41

    Article  Google Scholar 

  • Mišurcová L, Kráčmar S, Klejdus B, Vacek J (2010) Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J Food Sci 28:27–35

    Article  Google Scholar 

  • Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP (2013) Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97(8):3625–3642

    Article  CAS  PubMed  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Ngo DN, Kim MM, Kim SK (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym 74(2):228–234

    Article  CAS  Google Scholar 

  • Ohta S, Shiomi Y, Kawashima A, Aozasa O, Nakao T, Nagate T, Kitamura K, Miyata H (1995) Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J Appl Phycol 7(2):121–127

    Article  CAS  Google Scholar 

  • Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3(4):255–266

    Article  CAS  Google Scholar 

  • Pashkow FJ, Watumull DG, Campbell CL (2008) Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol 101(10):S58–S68

    Article  CAS  Google Scholar 

  • Pena-Ramos EA, Xiong YL (2001) Antioxidative activity of whey protein hydrolysates in a liposomal system. J Dairy Sci 84(12):2577–2583

    Article  CAS  PubMed  Google Scholar 

  • Phillips GO, Williams PA (eds) (2011) Handbook of food proteins. Elsevier

    Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Util 3(4):89–100

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Google Scholar 

  • Rao AR, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R, Ravishankar GA (2013) Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem 61(16):3842–3851

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2010) Single cell oils for the 21st century. In: Single cell oils. AOCS Press, pp 3–26

    Google Scholar 

  • Ravi S, Ambati RR, Kamath SB, Chandrappa D, Narayanan A, Chauhan VS, Ravishankar GA (2012) Influence of different culture conditions on yield of biomass and value added products in microalgae. In: Dynamic biochemistry and process biotechnology and molecular biology, pp 77–85. (special issue 2)

    Google Scholar 

  • Robertson R, Guihéneuf F, Bahar B, Schmid M, Stengel D, Fitzgerald G, Ross R, Stanton C (2015) The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Mar Drugs 13(8):5402–5424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues DB, Flores ÉM, Barin JS, Mercadante AZ, Jacob-Lopes E, Zepka LQ (2014) Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Res Int 65:144–148

    Article  CAS  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R, Muylaert K, Foubert I (2014) Influence of extraction solvent system on extractability of lipid components from different microalgae species. Algal Res 3:36–43

    Article  Google Scholar 

  • Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55(21):8516–8522

    Article  CAS  PubMed  Google Scholar 

  • Shivhare S, Mishra AK, Sethi VK, Bhadoria AK (2014) Growth rate, biochemical and biomass analysis of Scenedesmus obliquus algae in Shahpura Lake Bhopal (MP). Int J Pharm Chem Sci 3:477–482

    Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25(3):73–95

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29

    Article  CAS  Google Scholar 

  • Sioen I, Matthys C, Huybrechts I, Van Camp J, De Henauw S (2011) Consumption of plant sterols in Belgium: consumption patterns of plant sterol-enriched foods in Flanders, Belgium. Br J Nutr 105(6):911–918

    Article  CAS  PubMed  Google Scholar 

  • Soletto D, Binaghi L, Lodi A, Carvalho JC, Converti A (2005) Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243(1–4):217–224

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Taelman SE, De Meester S, Roef L, Michiels M, Dewulf J (2013) The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective. Bioresour Technol 150:513–522

    Article  CAS  PubMed  Google Scholar 

  • Tanticharoen M, Reungjitchachawali M, Boonag B, Vonktaveesuk P, Vonshak A, Cohen Z (1994) Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. J Appl Phycol 6(3):295–300

    Article  CAS  Google Scholar 

  • Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5(3):731–740

    Article  CAS  Google Scholar 

  • Volkman J (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60(5):495–506

    Article  CAS  PubMed  Google Scholar 

  • Washida K, Koyama T, Yamada K, Kita M, Uemura D (2006) Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett 47(15):2521–2525

    Article  CAS  Google Scholar 

  • Whistler R (ed) (2012) Industrial gums: polysaccharides and their derivatives. Elsevier

    Google Scholar 

  • Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2010) Production of single cell oils by dinoflagellates. In: Single cell oils. AOCS Press, pp 115–129

    Google Scholar 

  • Yang DJ, Lin JT, Chen YC, Liu SC, Lu FJ, Chang TJ, Wang M, Lin HW, Chang YY (2013) Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264. 7 cells via NF-κB and JNK inactivation. J Funct Foods 5(2):607–615

    Article  CAS  Google Scholar 

  • Yasukawa K, Akihisa T, Kanno H, Kaminaga T, Izumida M, Sakoh T, Tamura T, Takido M (1996) Inhibitory effects of sterols isolated from Chlorella vulgaris on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and tumor promotion in mouse skin. Biol Pharm Bull 19(4):573–576

    Article  CAS  PubMed  Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishnan, J., Sekar, T., Shanmugam, K. (2020). Marine-Microalgae as a Potential Reservoir of High Value Nutraceuticals. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_12

Download citation

Publish with us

Policies and ethics