Skip to main content

Emerging Trends of Biotechnology in Marine Bioprospecting: A New Vision

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences
  • 573 Accesses

Abstract

The ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds. Marine biotechnology is the science in which marine organisms are used in full or partially to make or modify products, to improve plants or animals, or to develop microorganisms for specific uses. With the help of different molecular and biotechnological techniques, humans have been able to elucidate many biological methods applicable to both aquatic and terrestrial organisms. Marine biotechnology is an innovative field of research in science and technology concerning the support of living organisms with marine products and tools. To understand the omics of the living species, it is a novel way to produce genetically modified food, drugs, and energy to overcome global demand. The exploitation of biotechnology for drug discovery, including enzymes, antibiotics, and biopolymers, and chemical compounds from marine sources is deliberated in this Chapter. In addition, well-known and broadly used analytical techniques are derived from marine molecules or enzymes, including green fluorescence protein gene tagging methods and heat-resistant polymerases used in the polymerase chain reaction. Advances in bacterial identification, metabolic profiling, and physical handling of cells are being revolutionized by techniques such as mass spectrometric analysis of bacterial proteins. Advances in instrumentation and a combination of these physical advances with progress in proteomics and bioinformatics are accelerating our ability to harness biology for commercial gain. The objective of this review is to highlight some of the recent developments and findings in the area of marine biotechnology with special reference to the biomedical potential of marine natural organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam GC, Sorensen EJ, Cravatt BF (2002) Chemical strategies for functional proteomics [J]. Mol Cell Proteomics 1(10):781–790

    Article  CAS  PubMed  Google Scholar 

  • Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases [J]. AAPS J 8(2):E314–E321

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn JM, Sung HJ, Yoon YH et al (2014) Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer [J]. Mol Cell Proteomics 13(1):30–48

    Article  CAS  PubMed  Google Scholar 

  • Amacher DE (2010) The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity [J]. Toxicol Appl Pharmacol 245(1):134–142

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words [J]. Electrophoresis 19(11):1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Anonymous, Marine biotechnology: A European strategy for marine biotechnology, ESF Marine Board Feasibility Study Group Report, December (2001)

    Google Scholar 

  • Bambini S, Rappuoli R (2009) The use of genomics in microbial vaccine development [J]. Drug Discov Today 14(5–6):252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcina I, Iriberri J, Egea L (1987) Enumeration, isolation and some physiological properties of actinomycetes from sea water and sediment. Syst Appl Microbiol 10:85–91

    Article  Google Scholar 

  • Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng W-O, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM (2008) Linking microbial phylogeny to metabolic activity at the single cell level by using enhanced element labeling catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74:3143–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett KL, Funk M, Tschernutter M et al (2011) Proteomic analysis of human cataract aqueous humour: Comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens [J]. J Proteome 74(2):151–166

    Article  CAS  Google Scholar 

  • Bilder RM, Sabb FW, Cannon TD et al (2009) Phenomics: the systematic study of phenotypes on a genome-wide scale [J]. Neuroscience 164(1):30–42

    Article  CAS  PubMed  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins [J]. Trends Biotechnol 17(3):121–127

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification [J]. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Bones J, Byrne JC, O’Donoghue N et al (2011) Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms [J]. J Proteome Res 10(3):1246–1265

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Karl DM, Colwell RR (2009) Microbial oceanography in a sea of opportunity. Nature 459:180–184

    Article  CAS  PubMed  Google Scholar 

  • Braker G, Ayala-del-Río HCL, Devol AH, Fesefeldt A, Tiedje JM (2001) Community structure of denitrifies, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67:1893–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Bulman A, Neagu M, Constantin C (2013) Immunomics in skin cancer-improvement in diagnosis, prognosis and therapy monitoring [J]. Curr Proteomics 10(3):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield DA, Owen JB (2011) Lectin-affinity chromatography brain glycoproteomics and Alzheimer disease: insights into protein alterations consistent with the pathology and progression of this dementing disorder [J]. Proteomics Clin Appl 5(1–2):50–56

    Article  CAS  PubMed  Google Scholar 

  • Centre for Marine Biodiversity (2008) Biodiversity in the marine environment. http://www.marinebiodiversity.ca/cmb/what-is-marine-biodiversity/biodiversity-in-the-marine-environment. Accessed 20 Oct 2008

  • Chen J, Kähne T, Röcken C et al (2004) Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins [J]. J Proteome Res 3(5):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR (1997) Microbial biodiversity and biotechnology. In: Reaka-Kudla ML et al (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, University of Washington DC, Washington, DC

    Google Scholar 

  • Cushman GT (2012) Guano and the opening of the Pacific world: a global ecological history. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Danku JM, Gumaelius L, Baxter I et al (2009) A high-throughput method for Saccharomyces cerevisiae (yeast) ionomics [J]. J Anal At Spectrom 24(1):103–107

    Article  CAS  Google Scholar 

  • Danovaro R, Manini E, Della’Anno A (2002) Higher abundance of bacteria than of viruses in deer Mediterranean sediments. Appl Environ Microbiol 68:1468–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Nys R, Steinberg PD (2002) Linking marine biology and biotechnology. Curr Opin Biotechnol 13:244–248

    Article  CAS  PubMed  Google Scholar 

  • Demirjian DC, Morís-Varas F, Cassidy C (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Denkert C, Budczies J, Weichert W et al (2008) Metabolite profilin of human colon carcinoma--deregulation of TCA cycle and amino acid turnover [J]. Mol Cancer 7(72):1476–4598

    Google Scholar 

  • Droste P, Miebach S, Niedenführ S et al (2011) Visualizing multi-omics data in metabolic networks with the software Omix - a case study [J]. Biosystems 105(2):154–161

    Article  CAS  PubMed  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing – linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225

    Article  CAS  PubMed  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic archaea. Curr Opin Microbiol 8:649–655

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ, Clark S, Nair TM et al (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae [J]. Genome Biol 6(9):R77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowski P (2009) The once and future ocean. Oceanography 22:246–251

    Article  Google Scholar 

  • Feist, P. 2008 A tale from the sea to Ara-C. http://www.pfeist.net/ALL/arac/. Accessed 2 June 2008

  • Fenical W (1983) Marine plants: a unique and unexplored resource In: Plants: the potential for extracting protein, medicines, and other useful chemicals, p. 147

    Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10(207–214)

    Google Scholar 

  • Finkel E (2009) With ‘Phenomics’, plant scientists hope to shift breeding into overdrive [J]. Science 325(5939):380–381

    Article  CAS  PubMed  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation [J]. Nature 447(7143):413–417

    Article  CAS  PubMed  Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater–marine gradient. Environ Microbiol 8:684–696

    Article  CAS  PubMed  Google Scholar 

  • Friz CT (1968) The biochemical composition of the free-living amoebae Chaos chaos, Amoeba dubia, and Amoeba proteus. Comp Biochem Physiol 26:81–90. Species listed | Record id

    Article  CAS  PubMed  Google Scholar 

  • Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72: 257–262; Zengler K, Toledo G, Rappó M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99:15681–15686

    Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 356:148–150

    Google Scholar 

  • González-Fernández M, García-Barrera T, Arias-Borrego A et al (2009) Metallomics integrated with proteomics in deciphering metal-related environmental issues [J]. Biochimie 91(10):1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin [J]. Nature 447(7143):399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M (2012) Alkane biodegradation genes from chronically polluted Subantarctic coastal sediments and their shifts in response to oil exposure. Microb Ecol 64:605–616

    Article  CAS  PubMed  Google Scholar 

  • Guilbert JJ (2003) The world health report 2002—reducing risks, promoting healthy life. Educ Health (Abingdon) 16:230

    Article  CAS  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536

    Article  CAS  PubMed  Google Scholar 

  • Hagglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation [J]. J Proteome Res 3(3):556–566

    Article  CAS  PubMed  Google Scholar 

  • Hands Winkler (1920) Verbreitung und Ursache der parthenogenesis im Pflanzen-und Tierreiche

    Google Scholar 

  • Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the "H3 barcode hypothesis" [J]. Proc Natl Acad Sci U S A 103(17):6428–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Gross RW (2003) Global analyses of cellular lipidome directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics [J]. J Lipid Res 44(6):1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Hassani S, Martens H, Qannari EM et al (2010) Analysis of -omics data: graphical interpretation- and validation tools in multiblock methods [J]. Chemom Intell Lab Syst 104(1):140–153

    Article  CAS  Google Scholar 

  • He Y (2012) Omics-based systems vaccinology for vaccine target identification [J]. Drug Dev Res 73(8):559–568

    Article  CAS  PubMed Central  Google Scholar 

  • Heidelberg KB, Gilbert JA, Joint I (2010) Marine genomics: at the interface of marine microbial ecology and biodiscovery. Microb Biotechnol 3:531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey WJ, Chen S, Zhao J (2012) The phn island:a new genomic island encoding catabolism of polynuclear aromatic hydrocarbons. Front Microbiol 3:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Howells DW, Sena ES, O’Collins V et al (2012) Improving the efficiency of the development of drugs for stroke [J]. Int J Stroke 7(5):371–377

    Article  PubMed  Google Scholar 

  • Hughes GC (1974) Geographical distribution of the higher marine fungi. Veroeff Inst Meeresforsch Bremerhaven Suppl 5:419–441

    Google Scholar 

  • Hurst et al (2016) Regional redistribution through the US mortage market: dataset

    Google Scholar 

  • Ichikawa W (2006) Prediction of clinical outcome of fluoropyrimidine-based chemotherapy for gastric cancer patients, in terms of the 5-fluorouracil metabolic pathway [J]. Gastric Cancer 9:145–155

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Takimura O, Kawaguchi K, Nitoda T, Fuse H et al (2003) Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl Environ Microbiol 69:878–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irar S, Brini F, Masmoudi K et al (2014) Combination of 2DE and LC for plant proteomics analysis [J]. Methods Mol Biol 1072:131–140

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Mußmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50:203–213

    Article  CAS  PubMed  Google Scholar 

  • Issa AM (2000) Pharmacogenetics, ethical issues: review of the nuffield council on bioethics report. Trends Pharmacol Sci 21:247

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Kuno A, Ikehara Y et al (2012) LecT-Hepa, a glyco-marker derived from multiple lectins, as a predictor of liver fibrosis in chronic hepatitis C patients [J]. Hepatology 56(4):1448–1456

    Article  CAS  PubMed  Google Scholar 

  • Jang YJ, Jeon OH, Kim DS (2007) Saxatilin, a snake venom disintegrin, regulates platelet activation associated with human vascular endothelial cell migration and invasion [J]. J Vasc Res 44(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Jenson PR, Lauro FM (2008) An assessment of antibacterial diversity in the marine environment. Antonie Van Leeuwenhoek 94:51–62

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code [J]. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joy T, Hegele RA (2008) Genetics of metabolic syndrome: is there role for phenomics? [J]. Curr Atheroscler Rep 10(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1987) Screening of Bacteria with antiviral activity against infectious hematopoietic necrosis virus (IHNV) from estuarine and marine environments. Nippon Suisan Gakkaishi 53:2179–2185

    Article  Google Scholar 

  • Karna RR, Uma L, Subramanian G, Mohan PM (1999) Biosorption of toxic metal ions by alkali extracted biomass of a marine cyanobacterium, Phormidium valderianum BDU 30501. World J Microbiol Biotechnol 15:729–732

    Article  CAS  Google Scholar 

  • Klawitter J, Haschke M, Kahle C et al (2010) Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose [J]. Br J Clin Pharmacol 70(2):241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokare CR, Mahadik KR, Kadam SS, Chopade BA (2004) Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from the west coast of India. Curr Sci 86:593–597

    Google Scholar 

  • Kubota D, Yoshida A, Kikuta K et al (2014) Proteomic approach to gastrointestinal stromal tumor identified prognostic biomarkers [J]. J Proteom Bioinform 7(1):10–16

    Article  CAS  Google Scholar 

  • Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis [J]. Nat Rev Genet 11(3):191–203

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  PubMed  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults [J]. PLoS One 5(2):e9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Wu T-D, Mazéas L, Toffin L, Guerquin-Kern J-L, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen EL (2006) The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr Opin Biotechnol 17:92–97

    Article  CAS  PubMed  Google Scholar 

  • Manichanh C, Rigottier-Gois L, Bonnaud E et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach [J]. Gut 55(2):205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcos MS, Lozada M, Di Marzio WD, Dionisi HM (2012) Abundance, dynamics, and biogeographic distribution of seven polycyclic aromatic hydrocarbon dioxygenase gene variants in coastal sediments of Patagonia. Appl Environ Microbiol 78:1589–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marechal E, Riou M, Kerboeuf D et al (2011) Membrane lipidomics for the discovery of new antiparasitic drug targets [J]. Trends Parasitol 27(11):496–504

    Article  CAS  PubMed  Google Scholar 

  • Marhuenda-Edgea FC, Bonate MJ (2002) Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol 13:385–389

    Article  Google Scholar 

  • Maskos U, Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ [J]. Nucleic Acids Res 20(7):1679–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre RS, Cha DS, Jerrell JM et al (2014) Advancing biomarker research: utilizing ‘big data’ approaches for the characterization and prevention of bipolar disorder [J]. Bipolar Disord 16(5):531–547

    Article  PubMed  Google Scholar 

  • McKew BA, Taylor JD, McGenity TJ, Underwood GJC (2011) Resistance and resilience of benthic biofilm communities from a temperate salt marsh to desiccation and rewetting. ISME J 5:30–41

    Article  PubMed  Google Scholar 

  • Miyatake T, MacGregor BJ, Boschker HTS (2009) Linking microbial community function to phylogeny of sulfate-reducing Deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl Environ Microbiol 75:4927–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu AK, Chan YS, Kang SS et al (2014) Detection of host-specific immunogenic proteins in the saliva of patients with oral squamous cell carcinoma [J]. J Immunoass Immunochem 35(2):183–193

    Article  CAS  Google Scholar 

  • Munn C (2004) Marine microbiology: ecology and applications. BIOS Scientific, London

    Book  Google Scholar 

  • Munoz, Riley et al (2008) Utilization of cellulosic waste from tequila baggasse and production of polyhydroxyalkanoate(PHA) bioplastics by Saccharophagusdegradans

    Google Scholar 

  • Munro HG et al (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–16

    Article  CAS  PubMed  Google Scholar 

  • Narsinh L (2004) Biotechnological potential for marine sponges. Curr Sci 86(11):1507–1508

    Google Scholar 

  • Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110

    Article  CAS  PubMed  Google Scholar 

  • Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008) Marine methylotrophs revealed by stable isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of ichip for high throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology [J]. Mol Syst Biol 2:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen M, Larsen LH, Jetten MS, Revsbech NP (2004) Bacterium-based NO2-biosensor for environmental applications. Appl Environ Microbiol 70:6551–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigreli RF, Stempien MF, Ruggieri GD, Liguori VR, Cecil JT (1967) Substances of potential biomedical importance from marine organisms. Fed Proc 26:1197–1205

    Google Scholar 

  • Nunez R, Garateix A, Laguna A, Fernández MD, Ortiz E, Llanio M, Valdés O, Rodríguez A, Menéndez R (2006) Caribbean marine biodiversity as a source of new compounds of biomedical interest and other industrial applications. Newsl Pharmacol 3:111–119

    Google Scholar 

  • Odisi et al (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electronic J Biotechnol

    Google Scholar 

  • Okami Y (1982) Potential use of Marne microorganisms for antibiotics and enzyme production. Pure Appl Chem 54:1951–1962

    Article  CAS  Google Scholar 

  • Ortega-Morales BO, Chan-Bacab MJ, Dela Rosa-García SDC, Camacho-Chab JC (2010) Valuable processes and products from marine intertidal microbial communities. Curr Opin Biotechnol 21:346–352

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial analysis. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8:438–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  PubMed  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  • Ping S, Wang S, Zhang J et al (2005) Effect of all-trans-retinoic acid on mRNA binding protein p62 in human gastric cancer cells [J]. Int J Biochem Cell Biol 37(3):616–627

    Article  CAS  PubMed  Google Scholar 

  • Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing [J]. Science 287(5459):1816–1820

    Article  CAS  PubMed  Google Scholar 

  • Poinar HN, Schwarz C, Qi J et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA [J]. Science 311(5759):392–394

    Article  CAS  PubMed  Google Scholar 

  • Poon TC, Sung JJ, Chow SM et al (2006) Diagnosis of gastric cancer by serum proteomic fingerprinting [J]. Gastroenterology 130(6):1858–1864

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Shouche Y, Jangid K, Kostka JE (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97:51–62

    Article  CAS  PubMed  Google Scholar 

  • Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—Current status and microbiological implications. Appl Microbiol Biotechnol 59: 125–134; 7 Thakur NL, Müller WEG Biotechnological potential of marine sponges. Curr Sci 86(2004):1506–1512

    Google Scholar 

  • Purushothaman A (1998) Microbial diversity. In: Proceedings of the technical workshop on biodiversity of gulf of Mannar marine biosphere reserve. M.S Swaminathan Research Foundation, Chennai, pp 86–91

    Google Scholar 

  • Quillaguaman J, Guzman H, Van-Thuoc D, Hatti Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  CAS  PubMed  Google Scholar 

  • Raja Brindha J, Selva Mohan T, Immanual G, Jeeva S, Packia Lekshmi NCJ (2011) Studies on amylase and cellulase enzyme activity of the fungal organisms causing spoilage in tomato. Eur J Exp Biol 1:90–96

    CAS  Google Scholar 

  • Reid PC, Edwards M (2001) Plankton and climate. In Steele, J.H. et al edited Encyclopedia of ocean sciences academic press. N Y 4:2194–2200

    Google Scholar 

  • Richards Thomas A, Meredith DMJ, Leonard G, Bass D (2012) Marine Fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  CAS  Google Scholar 

  • Robertson DG (2005) Metabonomics in toxicology: a review [J]. Toxicol Sci 85(2):809–822

    Article  CAS  PubMed  Google Scholar 

  • Ruth L (2006) Gambling in the deep sea. Eur Mol Biol Org Rep 7(1):17

    CAS  Google Scholar 

  • Sabatine MS, Liu E, Morrow DA et al (2005) Metabolomic identification of novel biomarkers of myocardial ischemia [J]. Circulation 112(25):3868–3875

    Article  CAS  PubMed  Google Scholar 

  • Sabu A (2003) Sources properties and applications of microbial therapeutic enzymes. Indian J Biotechnol 2:334–341

    CAS  Google Scholar 

  • Samuel P, Prince L, Prabakaran P (2011) Antibacterial activity of marine derived Fungi collected from South East Coast of Tamil Nadu. India J Microbiol Biotech Res 1(4):86–94

    Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660

    Article  CAS  PubMed  Google Scholar 

  • Scanlan PD, Shanahan F, Clune Y et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis [J]. Environ Microbiol 10(3):789–798

    Article  CAS  PubMed  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  • Schmidt EW (2005) From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria association. Trends Biotechnol 23:437–440

    Article  CAS  PubMed  Google Scholar 

  • Schooley K, Zhu P, Dower SK et al (2003) Regulation of nuclear translocation of nuclear factor-kappaB relA: evidence for complex dynamics at the single-cell level [J]. Biochem J 369(Pt 2):331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah NS, Wright A, Bai G-H, Barrera L, Boulahbal F, Martín-Casabona N, Drobniewski F, Gilpin C, Havelková M, Lepe R et al (2007) Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 13:380–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar CVS, Malar AHJ, Punitha SMJ (2010)

    Google Scholar 

  • Shanks RH, Rizzieri DA, Flowers JL et al (2005) Preclinical evaluation of gemcitabine combination regimens for application in acute myeloid leukemia [J]. Clin Cancer Res 11(11):4225–4233

    Article  CAS  PubMed  Google Scholar 

  • Siggers RH, Siggers J, Boye M et al (2008) Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs [J]. J Nutr 138(8):1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Simmons TL et al (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4(2):333

    CAS  PubMed  Google Scholar 

  • Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28:111–116

    Article  CAS  PubMed  Google Scholar 

  • Skulberg OM (2000) Microalgal as a source of bioactive molecules experience from Cyanophyte research. J Appl Phycol 12:341–348

    Article  CAS  Google Scholar 

  • Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368:299–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sponga F, Cavaletti L, Lazzarini A, Borghi A, Ciciliato I, Losi D, Marinelli F (1999) Biodiversity of potentials of marine derived microorganisms. J Biotechnol 70:5069

    Article  Google Scholar 

  • Stalmach A, Albalat A, Mullen W et al (2013) Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications [J]. Electrophoresis 34(11):1452–1464

    Article  CAS  PubMed  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang K-Q, Yang J (2012) Culture-independent methods for studying environmental microorganisms: Methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Tsang C-N, Sun H (2009) Identification and characterization of metallodrug binding proteins by (metallo) proteomics [J]. Metallomics 1(1):25–31

    Article  CAS  Google Scholar 

  • Suttle CA (2007) Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Suvorov M, Kumar R, Zhang H, Hutcheson S (2011) Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2

    Google Scholar 

  • Synnes M (2007) Bioprospecting of organisms from the deep sea: scientific and environmental aspects. Clean Techn Environ Policy 9:53

    Article  Google Scholar 

  • Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ (2004) Combining catalyzed reporter deposition-fluorescence in situ hybridization and microauto radiography to detect substrate utilization by Bacteria and Archaea in the deep ocean. Appl Environ Microbiol 70:4411–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terstappen GC, Schlupen C, Raggiaschi R et al (2007) Target deconvolution strategies in drug discovery [J]. Nat Rev Drug Discov 6(11):891–903

    Article  CAS  PubMed  Google Scholar 

  • Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: potential hot spots for natural products discovery? J Nat Prod 73:489–499

    Article  CAS  PubMed  Google Scholar 

  • Tissot B, North SJ, Ceroni A et al (2009) Glycoproteomics: past, present and future [J]. FEBS Lett 583(11):1728–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UN Atlas of the Ocean (n.d.) Marine biodiversity

    Google Scholar 

  • Uo T, Ueda M, Nishiyama T, Yoshimura T, Esaki N (2001) Purification and characterization of alanine racemase from hepatopancreas of black-tiger prawn, Penaeus monodon. J Mol Catal B Enzym 12:137–144

    Article  CAS  Google Scholar 

  • Uzair B, Ahmeda N, Mohammad FV, Ahmad VU, Edwards D (2009) Screening of marine bacteria of Pakistan coast for drug discovery potential. Proc Pakistan Acad Sci 46:137–144

    Google Scholar 

  • Valet G (2006) Cytomics as a new potential for drug discovery [J]. Drug Discov Today 11(17):785–791

    Article  CAS  PubMed  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B et al (1995) Serial analysis of gene expression [J]. Science 270(5235):484–487

    Article  CAS  PubMed  Google Scholar 

  • Waaland JR, Stiller JW, Cheney DP (2014) Minireview: macroalgal candidates for genomics. J Phycol 40:26–33

    Article  Google Scholar 

  • Wagh AB, Thakur NL, Anil AC, Venkat K (1997) Marine sponges: A potential source of eco-friendly antifouling compounds. In: Proceedings of the US-Pacific Rim workshop Hawaii, USA, held on17–20 March 1997 (Emerging non-metallic for the marine environment, section 3), pp 72–79

    Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification characterisation of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan SK, Dai WX et al (2010) A metabonomic approach to chemosensitivity prediction of cisplatin plus 5-fluorouracil in a human xenograft model of gastric cancer [J]. Int J Cancer 127(12):2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Ward SJ (2001) Drug discovery and genomics technologies: Impact of genomics in drug discovery. Bio Techn 31(3):626

    CAS  Google Scholar 

  • Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems [J]. J Lipid Res 47(10):2101–2111

    Article  CAS  PubMed  Google Scholar 

  • Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ (2006) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ Microbiol 8:1575–1589

    Article  CAS  PubMed  Google Scholar 

  • Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W et al (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13

    Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics [J]. Nat Rev Drug Discov 4(7):594–610

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR (2006) Lipidomics in drug and biomarker development [J]. Expert Opin Drug Discovery 1(7):723–736

    Article  CAS  Google Scholar 

  • Whiteley AS, Manefield M, Lueders T (2006) Unlocking the “microbial black box” using RNA-based stable isotope probing technologies. Curr Opin Biotechnol 17:67–71

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH (2008) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol:26–31

    Google Scholar 

  • Willett WC, Koplan JP, Nugent R, Dusenbury C, Puska P, Gaziano TA (2006) Prevention of chronic disease by means of diet and lifestyle changes. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P (eds) Disease control priorities in developing countries. World Bank, Washington, DC

    Google Scholar 

  • Woese CR, Kandler O, Wheelis MC (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolstencroft K, Haines R, Fellows D et al (2013) The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud [J]. Nucleic Acids Res 41(Web Server issue):W557–W561

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Xie X, Liu Y et al (2012) Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS [J]. J Proteome Res 11(9):4541–4552

    Article  CAS  PubMed  Google Scholar 

  • Yach D, Hawkes C, Gould L, Hoffman KJ (2004) The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA 291:2616–2622

    Article  CAS  PubMed  Google Scholar 

  • Yakubu A, Tanko MU, Sani SDM (2011) Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface interactions with some synthetic polymers for biodegradable packaging MaterialProcessing industry. Adv Appl Sci Res 2:532–540

    CAS  Google Scholar 

  • Yan XD, Pan LY, Yuan Y et al (2007) Identification of platinum resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines [J]. J Proteome Res 6(2):772–780

    Article  CAS  PubMed  Google Scholar 

  • Yen TY, Haste N, Timpe LC et al (2014) Using a cell line breast cancer progression system to identify biomarker candidates [J]. J Proteome 96:173–183

    Article  CAS  Google Scholar 

  • Your world biotechnology and your teacher’s guide (n.d.) Marine biotechnology, vol 7, issue 2. http://www.biotechinstitute.org/pdf

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19: 162–173; Park SJ, Park BJ, Rhee SK (2008) Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12:605–615

    Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang L (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 6:276

    Article  CAS  Google Scholar 

  • Zhang Y, Lynd L (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Sun H, Yan G et al (2014) Metabolomics in diagnosis and biomarker discovery of colorectal cancer [J]. Cancer Lett 345(1):17–20

    Article  CAS  PubMed  Google Scholar 

  • Zhiyue L, Zhongdao W, Limei Z, Pengyu J, Yifeng C, Shiqi L, Hongxi W, Hao L (2015) Genome mining offers a new starting point for parasitology research. Parasitol Res 114(2):399–409

    Article  Google Scholar 

  • Ziegler G, Terauchi A, Becker A et al (2013) Ionomic screening of field-grown soybean identifies mutants with altered seed elemental composition [J]. Plant Genome 6(2):1–9

    Article  CAS  Google Scholar 

  • Zobell CE (1946) Marine microbiology. Chronica Botanica Co., Waltham, p 240

    Google Scholar 

  • Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A., Tailor, V. (2020). Emerging Trends of Biotechnology in Marine Bioprospecting: A New Vision. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_1

Download citation

Publish with us

Policies and ethics