Skip to main content

Copula Markov Models for Count Series with Excess Zeros

  • Chapter
  • First Online:
Copula-Based Markov Models for Time Series

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 697 Accesses

Abstract

Count time series data are observed in several applied disciplines such as environmental science, biostatistics, economics, public health, and finance. In some cases, a specific count, say zero, may occur more often than usual. Additionally, serial dependence might be found among these counts if they are recorded over time. Overlooking the frequent occurrence of zeros and the serial dependence could lead to false inference. In this chapter, Markov zero-inflated count time series models based on a joint distribution of consecutive observations are proposed. The joint distribution function of the consecutive observations is constructed through copula functions. First- or second-order Markov chains are considered with the univariate margins of zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), or zero-inflated Conway–Maxwell–Poisson (ZICMP) distributions. Under the Markov models, bivariate copula functions such as the bivariate Gaussian, Frank, and Gumbel are chosen to construct a bivariate distribution of two consecutive observations. Moreover, the trivariate Gaussian and max-infinitely divisible copula functions are considered to build the joint distribution of three consecutive observations. Likelihood-based inference is performed and asymptotic properties are studied. The proposed class of models is applied to arson counts example, which suggests that the proposed models are superior to some of the models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19(6):716–723

    Article  MathSciNet  Google Scholar 

  • Alqawba M, Diawara N, Chaganty NR (2019) Zero-inflated count time series models using gaussian copula. Sequen Anal 38(3):342–357

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Pal S (2016) Expectation maximization-based likelihood inference for flexible cure rate models with weibull lifetimes. Stat Methods Med Res 25(4):1535–1563

    Article  MathSciNet  Google Scholar 

  • Billingsley P (1961) Statistical inference for Markov processes, vol 2. University of Chicago Press

    Google Scholar 

  • Conway RW, Maxwell WL (1962) A queuing model with state dependent service rates. J Ind Eng 12(2):132–136

    Google Scholar 

  • Dias A, Embrechts P et al (2004) Dynamic copula models for multivariate high-frequency data in finance. ETH Zurich, Zurich, Manuscript, p 81

    Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5(3):236–244

    Google Scholar 

  • Emura T, Long T-H, Sun L-H (2017) R routines for performing estimation and statistical process control under copula-based time series models. Commun Stat Simul Comput 46(4):3067–3087

    Article  MathSciNet  Google Scholar 

  • Gonçalves E, Mendes-Lopes N, Silva F (2016) Zero-inflated compound poisson distributions in integer-valued garch models. Statistics 50(3):558–578

    Article  MathSciNet  Google Scholar 

  • Greene WH (1994) Accounting for excess zeros and sample selection in poisson and negative binomial regression models. NYU working paper no EC-94-10

    Google Scholar 

  • Hasan MT, Sneddon G, Ma R (2012) Regression analysis of zero-inflated time-series counts: application to air pollution related emergency room visit data. J Appl Stat 39(3):467–476

    Article  MathSciNet  Google Scholar 

  • He Z, Emura T (2019) The Com-Poisson cure rate model for survival data-computational aspects. J Chin Stat Assoc 57(1):1–42

    Google Scholar 

  • Hothorn T, Bretz F, Genz A (2001) On multivariate t and gauss probabilities in r. sigma 1000:3

    Google Scholar 

  • Ibragimov R (2009) Copula-based characterizations for higher order markov processes. Econ Theory 25(3):819–846

    Article  MathSciNet  Google Scholar 

  • Jia Y, Kechagias S, Livsey J, Lund R, Pipiras V (2018) Latent gaussian count time series modeling. arXiv:181100203

  • Joe H (1997) Multivariate models and multivariate dependence concepts. Chapman and Hall/CRC

    Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. Chapman and Hall/CRC

    Google Scholar 

  • Joe H (2016) Markov models for count time series. In Handbook of Discrete-Valued Time Series. Chapman and Hall/CRC, pp 49–70

    Google Scholar 

  • Joe H, Hu T (1996) Multivariate distributions from mixtures of max-infinitely divisible distributions. J Multivar Anal 57(2):240–265

    Article  MathSciNet  Google Scholar 

  • Lambert D (1992) Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    Article  Google Scholar 

  • Lennon H, Yuan J (2019) Estimation of a digitised gaussian arma model by monte carlo expectation maximisation. Comput Stat Data Anal 133:277–284

    Article  MathSciNet  Google Scholar 

  • Long T-H, Emura T (2014) A control chart using copula-based markov chain models. J Chin Stat Assoc 52:466–496

    Google Scholar 

  • Masarotto G, Varin C (2012) Gaussian copula marginal regression. Electron J Stat 6:1517–1549

    Article  MathSciNet  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135(3):370–384

    Article  Google Scholar 

  • Palaro HP, Hotta LK (2006) Using conditional copula to estimate value at risk. J Data Sci 4:93–115

    Google Scholar 

  • Patton AJ (2009) Copula-based models for financial time series. In Handbook of financial time series. Springer, pp 767–785

    Google Scholar 

  • Sellers KF (2012) A generalized statistical control chart for over-or under-dispersed data. Qual Reliabil Eng Int 28(1):59–65

    Article  Google Scholar 

  • Sellers KF, Raim A (2016) A flexible zero-inflated model to address data dispersion. Comput Stat Data Anal 99:68–80

    Article  MathSciNet  Google Scholar 

  • Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the conway-maxwell-poisson distribution. J R Stat Soc Ser C Appl Stat 54(1):127–142

    Article  MathSciNet  Google Scholar 

  • Shumway RH, Stoffer DS (2011) Time series regression and exploratory data analysis. In Time series analysis and its applications. Springer, pp 47–82

    Google Scholar 

  • Sun L-H, Lee C-S, Emura T (2018) A bayesian inference for time series via copula-based markov chain models. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2018.1529241

  • Wang P (2001) Markov zero-inflated poisson regression models for a time series of counts with excess zeros. J Appl Stat 28(5):623–632

    Article  MathSciNet  Google Scholar 

  • Weiß CH, Homburg A, Puig P (2019) Testing for zero inflation and overdispersion in inar (1) models. Stat Pap 60(3):473–498

    Article  MathSciNet  Google Scholar 

  • Yang M, Cavanaugh JE, Zamba GK (2015) State-space models for count time series with excess zeros. Stat Model 15(1):70–90

    Article  MathSciNet  Google Scholar 

  • Yang M, Zamba GK, Cavanaugh JE (2013) Markov regression models for count time series with excess zeros: A partial likelihood approach. Stat Methodol 14:26–38

    Article  MathSciNet  Google Scholar 

  • Yau KK, Wang K, Lee AH (2003) Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biomet J 45(4):437–452

    Article  MathSciNet  Google Scholar 

  • Zhu F (2012) Zero-inflated poisson and negative binomial integer-valued garch models. J Stat Plan Infer 142(4):826–839

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hsien Sun .

7.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Score functions

Appendices

Appendix A: Trivariate Max-Id Copula Function with Positive Stable LT and Bivariate Gumbel

The following is a derivation of the trivariate max-id copula function with the positive stable LT and the bivariate Gumbel, which results in the trivariate extreme value copula function. The positive stable function is given by

$$\begin{aligned} \psi (s) = \exp {\{ -s^{1/\rho _1}\}},~~~~ \rho _1 \ge 1, \end{aligned}$$

with the corresponding functional inverse given by

$$\begin{aligned} \psi ^{-1}(t) = (-\log {t})^{\rho _1}. \end{aligned}$$

Hence, the trivariate max-id copula given in (7.3.7) becomes

$$\begin{aligned} F_{123}(y_t,y_{t-1},y_{t-2})= & {} \exp \bigg \{- \bigg (\sum _{j \in \{t,t-2\}} \\\\\Big [- & {} \log {H(e^{-0.5(- \log F_j)^{\rho _1}},e^{-0.5 (-\log F_{t-1})^{\rho _1}};{\rho _2})} \\\\+ & {} \frac{1}{2} (- \log F_j)^{\rho _1} \Big ] \bigg )^{1/\rho _1} \bigg \}. \end{aligned}$$
(7.6.1)

Now, if \(H(.;\rho _2)\) is chosen to be the Gumbel copula, i.e.,

$$\begin{aligned} C(u_1,u_2; \rho )= \exp {\{ -([-\log {u_1}]^\rho +[-\log {u_2}]^\rho )^{1/\rho } \}}, \end{aligned}$$

then (7.6.1) becomes

$$\begin{aligned} F_{123}(y_t,y_{t-1},y_{t-2})= & {} \exp \bigg \{- \bigg (\sum _{j \in \{t,t-2\}} \Big [- \log \exp \Big \{ - \Big (\left[ - \log e^{-.5(-\log F_j)^{\rho _1}}\right] ^{\rho _2} \\\\+ & {} \left[ - \log e^{-.5(-\log F_{t-1})^{\rho _1}}\right] ^{\rho _2} \Big )^{1/\rho _2} \Big \} +\frac{1}{2} (- \log F_j)^{\rho _1} \Big ] \bigg )^{1/\rho _1} \bigg \} \\\\= & {} \exp \bigg \{- \bigg (\sum _{j \in \{t,t-2\}} \Big [\Big ( \Big [{\frac{1}{2^{\rho _2}}(-\log F_j)^{\rho _1 \rho _2}} \\\\+ & {} {\frac{1}{2^{\rho _2}}(-\log F_{t-1})^{\rho _1 \rho _2}} \Big )^{1/\rho _2} +\frac{1}{2} (- \log F_j)^{\rho _1} \Big ] \bigg )^{1/\rho _1} \bigg \} \\\\= & {} \exp \bigg \{- \bigg (\Big [ {\frac{1}{2^{\rho _2}}(-\log F_t)^{\rho _1 \rho _2}} + {\frac{1}{2^{\rho _2}}(-\log F_{t-1})^{\rho _1 \rho _2}} \Big ]^{1/\rho _2} \\\\+ & {} \Big [ {\frac{1}{2^{\rho _2}}(-\log F_{t-2})^{\rho _1 \rho _2}} + {\frac{1}{2^{\rho _2}}(-\log F_{t-1})^{\rho _1 \rho _2}} \Big ]^{1/\rho _2} \\\\+ & {} \frac{1}{2} (- \log F_t)^{\rho _1}+\frac{1}{2} (- \log F_{t-2})^{\rho _1} \bigg )^{1/\rho _1} \bigg \}. \end{aligned}$$
(7.6.2)

The bivariate margins of (7.6.2) are then given by

$$\begin{aligned} F_{j2}(y_j,y_{t-1})= & {} \psi \bigg (-\log {H(e^{-0.5\psi ^{-1}(F_j;\rho _1)},e^{-0.5\psi ^{-1}(F_{t-1};\rho _1)};{\rho _2})} \\\\+ & {} \frac{1}{2} \psi ^{-1}(F_j;\rho _1) + \frac{1}{2} \psi ^{-1}(F_{t-1};\rho _1); \rho _1 \bigg ) \\\\= & {} \exp \bigg \{- \bigg ( \log {H(e^{-0.5(-\log F_j)^{\rho _1}},e^{-0.5(-\log F_{t-1})^{\rho _1}};{\rho _2})} \\\\+ & {} \frac{1}{2} (-\log F_j)^{\rho _1} + \frac{1}{2} (- \log F_{t-1})^{\rho _1} \bigg )^{1/\rho _1} \bigg \} \\\\= & {} \exp \bigg \{- \bigg ( \Big ({\frac{1}{2^{\rho _2}}(-\log F_j)^{\rho _1\rho _2}} +{\frac{1}{2^{\rho _2}}(-\log F_{t-1})^{\rho _1\rho _2}}\Big )^{1/\rho _2} \\\\+ & {} \frac{1}{2} (-\log F_j)^{\rho _1} + \frac{1}{2} (- \log F_{t-1})^{\rho _1} \bigg )^{1/\rho _1} \bigg \}, \end{aligned}$$

for \( j = t, t-2\), and

$$ F_{13}(y_t,y_{t-2}) = \exp \Big \{-\Big [(-\log F_t)^{\rho _1} + (- \log F_{t-2})^{\rho _1}\Big ]^{1/\rho _1}\Big \}.$$

Appendix B: R Codes for Data Analysis

The following R functions produce some of the results shown in Tables 7.1 and 7.2. They are negative log-likelihoods of the first-order Markov ZIP model and the negative log-likelihood of the second-order Markov ZIP model with the Gaussian Copula. The functions are constructed in a similar way to the ones in Joe (2014). However, zero-inflation covariates and their parameters are accounted for here. Also, the trivariate normal functions are approximated using the R package “mvtnorm” (Hothorn et al. 2001). First, we define the functions and then run the Arson example on both models.

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, LH., Huang, XW., Alqawba, M.S., Kim, JM., Emura, T. (2020). Copula Markov Models for Count Series with Excess Zeros. In: Copula-Based Markov Models for Time Series. SpringerBriefs in Statistics(). Springer, Singapore. https://doi.org/10.1007/978-981-15-4998-4_7

Download citation

Publish with us

Policies and ethics