Skip to main content

Bayesian Estimation Under the t-Distribution for Financial Time Series

  • Chapter
  • First Online:
Copula-Based Markov Models for Time Series

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 674 Accesses

Abstract

This chapter studies Student’s t-distribution for fitting serially correlated observations where serial dependence is described by the copula-based Markov chain. Due to the computational difficulty of obtaining maximum likelihood estimates, alternatively, we develop Bayesian inference using the empirical Bayes method through the resampling procedure. We provide a Metropolis–Hastings algorithm to simulate the posterior distribution. We also analyze the stock price data in empirical studies for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carter CK, Kohn R (1994) Markov chain Monte Carlo in conditionally gaussian state space models. Biometrika 83(3):589–601

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Zona W, Songsak S, Sangyeol L (2017) Pair trading based on quantile forecasting of smooth transition Garch models. N Am J Econ Financ 39(2017):38–55

    Article  Google Scholar 

  • Chen X, Fan Y (2006) Estimation of copula-based semiparametric time series models. J Econ 130(2):307–335

    Article  MathSciNet  Google Scholar 

  • Curto J, Pinto J, Tavares G (2009) Modeling stock markets’ volatility using Garch models with normal, student’s t and stable Paretian distributions. Stat Pap 50(2):311–321

    Article  MathSciNet  Google Scholar 

  • Darsow WF, Nguten B, Olsen ET (1992) Copulas and Markov processes. Ill J Math 36(4):600–642

    Article  MathSciNet  Google Scholar 

  • Emura T, Long TH, Sun LH (2017) R routines performing estimation and statistical process control under copula-based time series models. Commun Stat - Simul Comput 46(4):3067–3087

    Article  MathSciNet  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell, PAMI-6(6):721–741

    Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1(3):515–534

    Article  MathSciNet  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis, 3rd edn. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  MathSciNet  Google Scholar 

  • Huang XW, Emura T (2019) Model diagnostic procedures for copula-Based Markov chain models for statistical process control. Commun Stat - Simul Comput. https://doi.org/10.1080/03610918.2019.1602647

    Article  Google Scholar 

  • Hobert JR, Casella G (1996) The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J Am Stat Assoc 91(436):1461–1473

    Article  MathSciNet  Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev/Rev Int Stat 55(2):163–172

    Article  MathSciNet  Google Scholar 

  • Joe H (1997) Multivariate models and dependence. Chapman & Hall, London

    Book  Google Scholar 

  • Kim J-M, Baik J, Reller M (2019) Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Commun Stat - Simul Comput. https://doi.org/10.1080/03610918.2018.1547404

    Article  Google Scholar 

  • Lin W-C, Emura T, Sun L-H (2019) Estimation under copula-based Markov normal mixture models for serially correlated data. Commun Stat - Simul Comput. https://doi.org/10.1080/03610918.2019.1652318

    Article  Google Scholar 

  • Long TH, Emura T (2014) A control chart using copula-based markov chain models. J Chin Stat Assoc 52(4):466–496

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Michael J, Nicholas P (2002) MCMC methods for financial econometrics. Handbook of financial econometrics

    Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer series in statistics, Springer, New York

    MATH  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41:100–114

    Article  MathSciNet  Google Scholar 

  • Platen E, Rendek R (2008) Empirical evidence on student-t log-returns of diversified world stock indices. J Stat Theory Pract 2(2):233–251

    Article  MathSciNet  Google Scholar 

  • Robert C, Casella G (2010) Introducing Monte Carlo methods with R. Springer, New York

    Book  Google Scholar 

  • Roberts GO, Rosenthal JS (2001) Optimal scaling for various Metropolis Hastings algorithms. Stat Sci 16(4):351–367

    Article  MathSciNet  Google Scholar 

  • Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo method (with discussion). J R Stat Society Ser B 55(1):3–23

    MATH  Google Scholar 

  • Song J, Kang J (2018) Parameter change tests for ARMA-GARCH models. Comput Stat Data Anal 121:41–56

    Article  MathSciNet  Google Scholar 

  • Sun L-H, Lee C-S, Emura T (2018) A Bayesian inference for time series via copula-based Markov chain models. Commun Stat-Simul Comput. https://doi.org/10.1080/03610918.2018.1529241

  • Wang WL, Lin TI, Lachos VH (2018) Extending multivariate t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Stat Methods Med Res 27(1):48–64

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hsien Sun .

5.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

R Codes for Data Analysis

Appendix: Moment Estimates

Appendix: Moment Estimates

Using \( m_{1}=E(Y)=\mu , \) we first obtain the moment estimates of \(\mu \) given by

$$ \tilde{\mu }_{(c)}=m^{(c)}_1=\frac{1}{n}\sum _{t=1}^nY^{(c)}_t. $$

Based on \(m_{2}=E(Y^2)=\mu ^{2}+\sigma ^{2}(\frac{\nu }{\nu -2})\), and \(m_{4}=E(Y^4)=\mu ^{4}+6\mu ^{2}\sigma ^{2}(\frac{\nu }{\nu -2})+\sigma ^{4}\frac{3\nu ^{2}}{(\nu -2)(\nu -4)}\), we have

$$ m^{(c)}_2={m^{(c)}_1}^2+\tilde{\sigma }_{(c)}^{2}\left( \frac{\tilde{\nu }_{(c)}}{\tilde{\nu }_{(c)}-2}\right) , $$

and

$$ m^{(c)}_4={m^{(c)}_1}^4+6{m^{(c)}_1}^2\tilde{\sigma }_{(c)}^2\left( \frac{\tilde{\nu }_{(c)}}{\tilde{\nu }_{(c)}-2}\right) +\tilde{\sigma }_{(c)}^{4}\frac{3\tilde{\nu }_{(c)}^{2}}{(\tilde{\nu }_{(c)}-2)(\tilde{\nu }_{(c)}-4)}, $$

where \(m^{(c)}_2=\frac{1}{n}\sum _{t=1}^n\left( Y^{(c)}_t\right) ^2\) and \(m^{(c)}_4=\frac{1}{n}\sum _{t=1}^n\left( Y^{(c)}_t\right) ^4\). Then, using \(\tilde{\sigma }_{(c)}^{2}(\frac{\tilde{\nu }_{(c)}}{\tilde{\nu }_{(c)}-2})=m^{(c)}_2-{m^{(c)}_1}^2\), we obtain

$$ m^{(c)}_4={m^{(c)}_1}^4+6{m^{(c)}_1}^2(m^{(c)}_2-{m^{(c)}_1}^2)+3\bigg (m^{(c)}_2-{m^{(c)}_1}^2\bigg )^2\frac{\tilde{\nu }_{(c)}-2}{\tilde{\nu }_{(c)}-4}. $$

Let

$$ \xi ^{(c)}=\frac{\tilde{\nu }_{(c)}-2}{\tilde{\nu }_{(c)}-4}= \frac{{m^{(c)}_{4}}-{m^{(c)}_{1}}^{4}-6{m^{(c)}_{1}}^{2}({m^{(c)}_{2}}{(c)}-{m^{(c)}_{1}}^{2})}{3({m^{(c)}_{2}}-{m^{(c)}_{1}}^{2})^2} . $$

Therefore

$$\tilde{\nu }_{(c)}=\frac{4\xi ^{(c)}-2}{\xi ^{(c)}-1}.$$

Note that we impose \( \xi ^{(c)}=\max \bigg \{\frac{{m^{(c)}_{4}}-{m^{(c)}_{1}}^{4}-6{m^{(c)}_{1}}^{2}({m^{(c)}_{2}}{(c)}-{m^{(c)}_{1}}^{2})}{3({m^{(c)}_{2}}-{m^{(c)}_{1}}^{2})^2},1\bigg \} \) such that \(\tilde{\nu }>4\) can be guaranteed. In addition, plugging \(\tilde{\nu }_{(c)}=\frac{4\xi ^{(c)}-2}{\xi ^{(c)}-1}\) into \(\tilde{\sigma }_{(c)}^{2}(\frac{\tilde{\nu }_{(c)}}{\tilde{\nu }_{(c)}-2})=m^{(c)}_2-{m^{(c)}_1}^2\) implies

$$ \tilde{\sigma }^{2}_{(c)}=({m_2^{(c)}}-{{m^{(c)}_{1}}}^2)\frac{ \xi ^{(c)}}{2\xi ^{(c)}-1}. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, LH., Huang, XW., Alqawba, M.S., Kim, JM., Emura, T. (2020). Bayesian Estimation Under the t-Distribution for Financial Time Series. In: Copula-Based Markov Models for Time Series. SpringerBriefs in Statistics(). Springer, Singapore. https://doi.org/10.1007/978-981-15-4998-4_5

Download citation

Publish with us

Policies and ethics