Skip to main content

Plant Phenolics for Overcoming Multidrug Resistance in Human Fungal Pathogen

  • Chapter
  • First Online:
Plant Phenolics in Sustainable Agriculture

Abstract

In spite of significant advances being made in the improvement of antifungal drugs, only limited number of drugs is currently available, and that too are not able to keep pace with the evolution of multidrug resistance (MDR). The urgent need includes the development of alternative drugs that are more efficient and tolerant than those traditionally already in use. Natural plant phenolics are among the most commonly occurring type of secondary metabolite in nature which is constantly being expanded through the discovery of new natural products. Interest in phenolics and the search for new biological activities within members of this class have intensified in recent years, as evidenced by the evaluation of their potential antifungal activities. Among most human pathogenic fungi, Candida albicans is of extreme importance due to their high frequency of colonization and infection in humans. Since nature has plethora of many promising natural compounds which can efficiently be exploited to improve the antifungal therapeutics, the objective of this book chapter is to describe the development of plant phenolics as antifungals for the treatment of Candida species and to note the most promising compounds with their diverse mechanism of actions and their uses in combination with traditional drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44:483–525

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Wani MY, Patel M, Sobral AJFN, Duse AG, Aqlan FM, Al-Bogami AS (2017) Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Medchemcomm 8:2195–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab (Lond) 11:13–27

    Google Scholar 

  • Alavarce RA, Saldanha LL, Almeida NL, Porto VC, Dokkedal AL, Lara VS (2015) The beneficial effect of Equisetum giganteum L. against Candida biofilm formation: new approaches to denture stomatitis. Evid Based Complement Alternat Med 2015:939625

    Article  PubMed  PubMed Central  Google Scholar 

  • Alem MA, Douglas LJ (2004) Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother 48:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alnuaimi AD, O'Brien-Simpson NM, Reynolds EC, McCullough MJ (2013) Clinical isolates and laboratory reference Candida species and strains have varying abilities to form biofilms. FEMS Yeast Res 13:689–699

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Anurag A, Fatima Z, Hameed S (2013) Natural phenolic compound: A potential antifungal target. In: Mendez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 1189–1195

    Google Scholar 

  • Ayine-Tora DM, Kingsford-Adaboh R, Asomaning WA, Harrison JJ, Mills-Robertson FC, Bukari Y, Sakyi PO, Kaminta S, Reynisson J (2016) Coumarin antifungal Lead compounds from Millettia thonningii and their predicted mechanism of action. Molecules 21:E1369

    Article  PubMed  CAS  Google Scholar 

  • Bajpai VK, Shukla S, Paek WK, Lim J, Kumar P, Kumar P, Na M (2017) Efficacy of (+)-Lariciresinol to control bacterial growth of Staphylococcus aureus and Escherichia coli O157:H. Front Microbiol 8:804

    Article  PubMed  PubMed Central  Google Scholar 

  • Bang KH, Kim YK, Min BS, Na MK, Rhee YH, Lee JP, Bae KH (2000) Antifungal activity of magnolol and honokiol. Arch Pharm Res 23:46–49

    Article  CAS  PubMed  Google Scholar 

  • Batovska D, Parushev S, Slavova A, Bankova V, Tsvetkova I, Ninova M, Najdenski H (2007) Study on the substituents' effects of a series of synthetic chalcones against the yeast Candida albicans. Eur J Med Chem 42:87–92

    Article  CAS  PubMed  Google Scholar 

  • Behbehani J, Shreaz S, Irshad M, Karched M (2017) The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates. Microb Pathog 113:209–217

    Article  CAS  PubMed  Google Scholar 

  • Brighenti FL, Salvador MJ, Gontijo AVL, Delbem ACB, Delbem ÁCB, Soares CP, de Oliveira MAC, Girondi CM, Koga-Ito CY (2017) Plant extracts: initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol 12:15–27

    Article  PubMed  CAS  Google Scholar 

  • Calixto Júnior JT, Morais SM, Martins CG, Vieira LG, Morais-Braga MF, Carneiro JN, Machado AJ, Menezes IR, Tintino SR, Coutinho HD (2015) Phytochemical analysis and modulation of antibiotic activity by Luehea paniculata Mart. & Zucc. (Malvaceae) in multiresistant clinical isolates of Candida spp. Biomed Res Int 2015:807670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canturk Z (2018) Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans. J Food Drug Anal 1:439–443

    Article  CAS  Google Scholar 

  • Cao Y, Dai B, Wang Y, Huang S, Xu Y, Cao Y, Gao P, Zhu Z, Jiang Y (2008) In vitro activity of baicalein against Candida albicans biofilms. Int J Antimicrob Agents 32:73–77

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Lee Y, Ku Y, Bae K, Chung C (1998) Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms. Planta Med 64:367–369

    Article  CAS  PubMed  Google Scholar 

  • Cheah HL, Lim V, Sandai D (2014) Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One 9:e95951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C (2016) Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxidative Med Cell Longev 2016:3571614

    Google Scholar 

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhai L, Arendrup MC (2015) In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med Mycol 53:194–198

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liu T, Wang K, Hou C, Cai S, Huang Y, Du Z, Huang H, Kong J, Chen Y (2016) Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One 11:e0153468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chingwaru W, Duodu G, Zyl YV, Schoeman CJ, Majinda RT, Yeboah SO, Jackson J, Kapewangolo PT, Kandawa-Schulz M, Minnaar A, Cencic A (2011) Antibacterial and anticandidal activity of Tylosema esculentum (marama) extracts. S Afr J Sci 107:1–11

    Article  CAS  Google Scholar 

  • Cui S, Qian J, Bo P (2013) Inhibitive effect on phagocytosis of Candida albicans induced by pretreatment with quercetin via actin cytoskeleton interference. J Tradit Chin Med 33:804–809

    Article  PubMed  Google Scholar 

  • da Costa Cordeiro BMP, de Lima Santos ND, Ferreira MRA, de Araújo LCC, Junior ARC, da Conceição Santos AD, de Oliveira AP, da Silva AG, da Silva Falcão EP, Dos Santos Correia MT, da Silva Almeida JRG, da Silva LCN, Soares LAL, Napoleão TH, da Silva MV, Paiva PMG (2018) Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complement Altern Med 18:284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva CR, de Andrade Neto JB, de Sousa CR, Figueiredo NS, Sampaio LS, Magalhães HI, Cavalcanti BC, Gaspar DM, de Andrade GM, Lima IS, de Barros Viana GS, de Moraes MO, Lobo MD, Grangeiro TB, Nobre Júnior HV (2014) Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 58:1468–1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai BD, Wang Y, Zhao LX, Li DD, Li MB, Cao YB, Jiang YY (2013) Cap1p attenuates the apoptosis of Candida albicans. FEBS J 280:2633–2643

    Article  CAS  PubMed  Google Scholar 

  • De Leo M, Braca A, De Tommasi N, Norscia I, Morelli I, Battinelli L, Mazzanti G (2004) Phenolic compounds from Baseonema acuminatum leaves: isolation and antimicrobial activity. Planta Med 70:841–846

    Article  PubMed  CAS  Google Scholar 

  • De Vita D, Friggeri L, D'Auria FD, Pandolfi F, Piccoli F, Panella S, Palamara AT, Simonetti G, Scipione L, Di Santo R, Costi R, Tortorella S (2014) Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorg Med Chem Lett 24:1502–1505

    Article  PubMed  CAS  Google Scholar 

  • Deva R, Ciccoli R, Kock L, Nigam S (2001) Involvement of aspirin-sensitive oxylipins in vulvovaginal candidiasis. FEMS Microbiol Lett 198:37–43

    Article  CAS  PubMed  Google Scholar 

  • Dey G, Chakraborty M, Mitra A (2005) Profiling C6-C3 and C6-C1 phenolic metabolites in Cocos nucifera. J Plant Physiol 162:375–381

    Article  CAS  PubMed  Google Scholar 

  • Donald G, Hertzer K, Eibl G (2012) Baicalein--an intriguing therapeutic phytochemical in pancreatic cancer. Curr Drug Targets 13:1772–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Seedi HR, El-Said AM, Khalifa SA, Göransson U, Bohlin L, Borg-Karlson AK, Verpoorte R (2012) Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem 60:10877–10895

    Article  CAS  PubMed  Google Scholar 

  • Evensen NA, Braun PC (2009) The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Farber BF, Wolff AG (1993) Salicylic acid prevents the adherence of bacteria and yeast to silastic catheters. J Biomed Mater Res 27:599–602

    Article  CAS  PubMed  Google Scholar 

  • Faria NC, Kim JH, Gonçalves LA, Martins Mde L, Chan KL, Campbell BC (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52:506–513

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Lu H, Zhu Z, Yan L, Jiang Y, Cao Y (2011) Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biol Pharm Bull 34:214–218

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Snyder SA, Smith JN, Chen YC (2016a) Anticancer properties of baicalein: a review. Med Chem Res 25:1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Wang H, Zhu L (2016b) Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of Vulvovaginal candidiasis. Cell Physiol Biochem 40:727–742

    Google Scholar 

  • Hubková B, Veliká B, Birková A, Guzy J, Mareková M (2014) Hydroxybenzoic acids and their derivatives as peroxynitrite scavengers. Free Radic Biol Med 75:S33–S34

    Article  PubMed  Google Scholar 

  • Hwang EI, Lee YM, Lee SM, Yeo WH, Moon JS, Kang TH, Park KD, Kim SU (2007) Inhibition of chitin synthase 2 and antifungal activity of lignans from the stem bark of Lindera erythrocarpa. Planta Med 73:679–682

    Article  CAS  PubMed  Google Scholar 

  • Hwang B, Cho J, Hwang IS, Jin HG, Woo ER, Lee DG (2011) Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem Biophys Res Commun 410:489–493

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Hwang IS, Liu QH, Woo ER, Lee DG (2012) (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 94:1784–1793

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Choi H, Hwang IS, Kim AR, Woo ER, Lee DG (2013) Synergistic antibacterial and antibiofilm effect between (+)-medioresinol and antibiotics in vitro. Appl Biochem Biotechnol 170:1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Ibezimako EC, Esimone CO, Ofokansi KC, Oragui CI (2003) Evaluation of the antifungal properties of nystatin-salicylic acid combinations against clinical isolates of Candida albicans. J Biomed Invest 2003:10–17

    Google Scholar 

  • Iida Y, Oh KB, Saito M, Matsuoka H, Kurata H (2000) In vitro synergism between nyasol, an active compound isolated from Anemarrhena asphodeloides, and azole agents against Candida albicans. Planta Med 66:435–438

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Ge Z, Ge Z, Chen K, Wu H, Liu X, Huang Y, Yuan L, Yang X, Liao F (2016) Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 108:166–176

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Guo N, Zhang J, Ding Y, Tang X, Liang J, Li L, Deng X, Yu L (2010) The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans. Lett Appl Microbiol 51:351–357

    Article  CAS  PubMed  Google Scholar 

  • Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014:952943

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaomongkolgit R, Jamdee K (2017) Inhibitory effect of alpha-mangostin on Candida biofilms. Odontology 105:248–253

    Article  CAS  PubMed  Google Scholar 

  • Kaomongkolgit R, Jamdee K, Chaisomboon N (2009) Antifungal activity of alpha-mangostin against Candida albicans. J Oral Sci 51:401–406

    Article  CAS  PubMed  Google Scholar 

  • Kelly GS (2011) Quercetin. Monograph Altern Med Rev 16:172–194

    PubMed  Google Scholar 

  • Kelly C, Jones O, Barnhart C, Lajoie C (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl Biochem Biotechnol 148:97–108

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49:171–177

    Article  PubMed  Google Scholar 

  • Kontogiorgis C, Hadjipavlou-Litina D (2003) Biological evaluation of several coumarin derivatives designed as possible anti-inflammatory/antioxidant agents. J Enzyme Inhib Med Chem 18:63–69

    Article  CAS  PubMed  Google Scholar 

  • Kozyra M, Biernasiuk A, Malm A, Chowaniec M (2015) Chemical compositions and antibacterial activity of extracts obtained from the inflorescences of Cirsium canum (L.) all. Nat Prod Res 29:2059–2063

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326

    Article  CAS  PubMed  Google Scholar 

  • Kuete V, Nana F, Ngameni B, Mbaveng AT, Keumedjio F, Ngadjui BT (2009) Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J Ethnopharmacol 124:556–561

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Google Scholar 

  • Kuwahara H, Kanazawa A, Wakamatu D, Morimura S, Kida K, Akaike T, Maeda H (2004) Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. J Agric Food Chem 52:4380–4387

    Article  CAS  PubMed  Google Scholar 

  • Lamarra J, Giannuzzi L, Rivero S, Pinotti A (2017) Assembly of chitosan support matrix with gallic acid-functionalized nanoparticles. Mater Sci Eng C Mater Biol Appl 79:848–859

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT (2011) Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 130:157–176

    Article  CAS  PubMed  Google Scholar 

  • Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50:107–113

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Liu M, Dawuti G, Dou Q, Ma Y, Liu HG, Aibai S (2017a) Antifungal activity of Gallic acid in vitro and in vivo. Phytother Res 31:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Chai D, Huang XW, Guan SX, Du J, Zhang HY, Sun Y, Jiang YY (2017b) Potent in vitro synergism of fluconazole and Osthole against fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 61:e00436–e00417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao K, Sun L (2018) Roles of the Hsp90-Calcineurin pathway in the antifungal activity of Honokiol. J Microbiol Biotechnol 28:1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Lim H, Nam JW, Seo EK, Kim YS, Kim HP (2009) (−)-Nyasol (cis-hinokiresinol), a norneolignan from the rhizomes of Anemarrhena asphodeloides, is a broad spectrum inhibitor of eicosanoid and nitric oxide production. Arch Pharm Res 32:1509–1514

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Kaihatsu K, Nishino K, Ogawa M, Kato N, Yamaguchi A (2012) Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Front Microbiol 3:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Messier C, Epifano F, Genovese S, Grenier D (2011) Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18:380–383

    Article  CAS  PubMed  Google Scholar 

  • Montagner C, de Souza SM, Groposoa C, Delle Monache F, Smânia EF, Smânia A Jr (2008) Antifungal activity of coumarins. Z Naturforsch C 63:21–28

    Article  CAS  PubMed  Google Scholar 

  • Nim S, Baghel P, Tran-Nguyen VK, Peres B, Nguyen KA, Pietro AD, Falson P, Prasad R, Boumendjel A (2018) Make azoles active again: chalcones as potent reversal agents of transporters-mediated resistance in Candida albicans. Future Med Chem 10:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Ling J, Wu CD (2015) Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida. Arch Oral Biol 60:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Oliveira VM, Carraro E, Auler ME, Khalil NM (2016) Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz J Biol 76:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panwar R, Pemmaraju SC, Sharma AK, Pruthi V (2016) Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm. Microb Pathog 95:21–31

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Lee JY, Moon SS, Hwang BK (2003) Isolation and anti-oomycete activity of nyasol from Anemarrhena asphodeloides rhizomes. Phytochemistry 64:997–1001

    Article  CAS  PubMed  Google Scholar 

  • Park C, Woo ER, Lee DG (2010) Anti-Candida property of a lignan glycoside derived from Styrax japonica S. et Z. via membrane-active mechanisms. Mol Cells 29:581–584

    Article  CAS  PubMed  Google Scholar 

  • Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68:571–603

    Article  PubMed  Google Scholar 

  • Pierce GE (2005) Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. J Ind Microbiol Biotechnol 32:309–318

    Article  CAS  PubMed  Google Scholar 

  • Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L (2009) Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol 58:1454–1462

    Article  PubMed  Google Scholar 

  • Pinto E, Afonso C, Duarte S, Vale-Silva L, Costa E, Sousa E, Pinto M (2011) Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography. Chem Biol Drug Des 77:212–222

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kapoor K (2005) Multidrug resistance in yeast Candida. Int Rev Cytol 242:215–248

    Article  CAS  PubMed  Google Scholar 

  • Raut JS, Rajput SB, Shinde RB, Surwase BS, Karuppayil SM (2013) Vanillin inhibits growth, morphogenesis and biofilm formation by Candida albicans. T.B.P.A 3:130–138

    CAS  Google Scholar 

  • Serpa R, França EJ, Furlaneto-Maia L, Andrade CG, Diniz A, Furlaneto MC (2012) In vitro antifungal activity of the flavonoid baicalein against Candida species. J Med Microbiol 61:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Zhang M, Wang T, Li Y, Wang C (2016) The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharm Biol 54:984–992

    Article  CAS  PubMed  Google Scholar 

  • Shirley KP, Windsor LJ, Eckert GJ, Gregory RL (2017) In vitro effects of Plantago Major extract, Aucubin, and Baicalein on Candida albicans biofilm formation, metabolic activity, and cell surface hydrophobicity. J Prosthodont 26:508–515

    Article  PubMed  Google Scholar 

  • Singh BN, Upreti DK, Singh BR, Pandey G, Verma S, Roy S, Naqvi AH, Rawat AK (2015) Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother 59:2153–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, Sun J, Deng P, Zhou F, Xu H, Wen Y, Teng F, Ge D, Feng R (2018) Oligochitosan-pluronic 127 conjugate for delivery of honokiol. Artif Cells Nanomed Biotechnol 5:1–11

    CAS  Google Scholar 

  • Songuigama C, Jean-Paul ND, Mamidou KW, Drissa S, Mahama Q (2018) Anticandidosic activities of new Chalcones vectorised by Benzimidazole against strain of Candida Albicans Pharmacoresistance to azoles. IOSR-JPBS 13:11–16

    Google Scholar 

  • Stalmach A (2014) Bioavailability of dietary anthocyanins and hydroxycinnamic acids trans. In: Watson RR, Preedy VR, Zibadi S (eds) . Polyphenols in Human Health and Disease Academic, San Diego, pp 561–576

    Google Scholar 

  • Stepanović S, Vuković D, Jesić M, Ranin L (2004) Influence of acetylsalicylic acid (aspirin) on biofilm production by Candida species. J Chemother 16:134–138

    Article  PubMed  Google Scholar 

  • Sun L, Liao K, Wang D (2015a) Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One 10:e0117695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun LM, Liao K, Liang S, Yu PH, Wang DY (2015b) Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J Appl Microbiol 118:826–838

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Liao K, Wang D (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12:e0184003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Liao K, Hang C (2018) Caffeic acid phenethyl ester synergistically enhances the antifungal activity of fluconazole against resistant Candida albicans. Phytomedicine 40:55–58

    Article  CAS  PubMed  Google Scholar 

  • Tatsimo SJ, Tamokou Jde D, Havyarimana L, Csupor D, Forgo P, Hohmann J, Kuiate JR, Tane P (2012) Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes 5:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Biomed Res Int 2013:251754

    PubMed  PubMed Central  Google Scholar 

  • Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY (2015a) Potential use of phenolic acids as anti-Candida agents: A review. Front Microbiol 6:1420

    Article  PubMed  PubMed Central  Google Scholar 

  • Teodoro GR, Brighenti FL, Delbem AC, Delbem ÁC, Khouri S, Gontijo AV, Pascoal AC, Salvador MJ, Koga-Ito CY (2015b) Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans. Future Microbiol 10:917–927

    Article  CAS  PubMed  Google Scholar 

  • Teodoro GR, Gontijo AVL, Borges AC, Tanaka MH, Lima GMG, Salvador MJ, Koga-Ito CY (2017) Gallic acid/hydroxypropyl-β-cyclodextrin complex: improving solubility for application on in vitro/ in vivo Candida albicans biofilms. PLoS One 12:e0181199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teodoro GR, Gontijo AVL, Salvador MJ, Tanaka MH, Brighenti FL, Delbem ACB, Delbem ÁCB, Koga-Ito CY (2018) Effects of acetone fraction from Buchenavia tomentosa aqueous extract and Gallic acid on Candida albicans biofilms and virulence factors. Front Microbiol 9:647

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian RR, Pan QH, Zhan JC, Li JM, Wan SB, Zhang QH, Huang WD (2009) Comparison of phenolic acids and Flavan-3-ols during wine fermentation of grapes with different harvest times. Molecules 14:827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trofa D, Agovino M, Stehr F, Schäfer W, Rykunov D, Fiser A, Hamari Z, Nosanchuk JD, Gácser A (2009) Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases. Microbes Infect 11:1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Dong HH, Zhao F, Wang J, Yan F, Jiang YY, Jin YS (2016) The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorg Med Chem Lett 26:3098–3102

    Article  CAS  PubMed  Google Scholar 

  • Woodbury A, Yu SP, Wei L, García P (2013) Neuro-modulating effects of honokiol: a review. Front Neurol 4:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Yücesoy M, Oktem IM, Gülay Z (2000) In-vitro synergistic effect of fluconazole with nonsteroidal anti-inflammatory agents against Candida albicans strains. J Chemother 12:385–389

    Article  PubMed  Google Scholar 

  • Zhou P, Fu J, Hs H, Liu X (2017) In vitro inhibitory activities of magnolol against Candida spp. Drug Des Devel Ther 11:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Kim AR, Kim JE, Choi JS, Chung HY (2002) Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J Agric Food Chem 50:5884–5890

    Article  CAS  PubMed  Google Scholar 

  • Zubricka D, Mišianikova A, Henzelyova J, Valletta A, De Angelis G, D'Auria FD, Simonetti G, Pasqua G, Čellarova E (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34:1953–1962

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None to declare

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Fatima, Z., Hameed, S. (2020). Plant Phenolics for Overcoming Multidrug Resistance in Human Fungal Pathogen. In: Lone, R., Shuab, R., Kamili, A. (eds) Plant Phenolics in Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_17

Download citation

Publish with us

Policies and ethics