Comparison of Bio-inspired Algorithms Applied to the Hospital Mortality Risk Stratification
Conference paper
First Online:
- 179 Downloads
Abstract
The construction of patient classification (or risk adjustment) systems allows comparison of the effectiveness and quality of hospitals and hospital services, providing useful information for management decision making and management of hospitals. Risk adjustment systems to stratify patients’ severity in a clinical outcome are generally constructed from care variables and using statistical techniques based on logistic regression (RL). The objective of this investigation is to compare the hospital mortality prediction capacity of an artificial neural network (RNA) with other methods already known.
Keywords
Hospital mortality Risk stratification Intensive care unit Artificial neural networks BootstrapReferences
- 1.Sargent, D.J.: Comparison of artificial neural networks with other statistical approaches results from medical data sets. Cancer 91, 1636–1642 (2001)CrossRefGoogle Scholar
- 2.Bifet, A., De Morales, G. F: Big data stream learning with Samoa. Recuperado de (2014). https://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAMOA
- 3.Clermont, G., Angus, D.C., DiRusso, S.M., Griffin, M., Linde-Zwirble, W.T.: Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Crit. Care Med. 29, 291–296 (2001)CrossRefGoogle Scholar
- 4.Wong, L.S.S., Young, J.D.: A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural network. Anaesthesia 54, 1048–1054 (1999)CrossRefGoogle Scholar
- 5.Bravo, M., Alvarado, M.: Similarity measures for substituting web services. Int. J. Web Serv. Res. 7(3), 1–29 (2010)CrossRefGoogle Scholar
- 6.Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. J. Cental South Univ. 20, 2708–2714 (2013)CrossRefGoogle Scholar
- 7.Viloria, A., Lezama, O. B. P: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, pp 1201–1206 (2019)Google Scholar
- 8.Viloria, A., Lis-Gutiérrez J. P., Gaitán-Angulo, M., Godoy, A. R. M., Moreno, G. C., Kamatkar, S. J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—Learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018)Google Scholar
- 9.Zhu, J., Fang, X. et al.: IBM cloud computing powering a smarter planet. In: Libro Cloud Computing, vol. 599.51, pp 621– 625 (2009)Google Scholar
- 10.Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Syst. Appl. 37(7), 5484–5490 (2010)CrossRefGoogle Scholar
- 11.Thames, L., Schaefer, D.: Software defined cloud manufacturing for industry 4.0. Procedía CIRP 52, 12–17 (2016)Google Scholar
- 12.Álvarez, M., Nava, J.M., Rue, M., Quintana, S.: Mortality prediction in head trauma patients: Performance of glasgow coma score and general severity systems. Crit. Care Med. 26, 142–148 (1998)CrossRefGoogle Scholar
- 13.Setnes, M., Kaymak, U.: Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Trans. Fuzzy Syst. 9(1), 153–163 (2001)CrossRefGoogle Scholar
- 14.Llorca, J., Dierssen, T.: Comparación de dos métodos para el cálculo de la incertidumbre en los análisis de laboratorio. Gac. Sanit. 14, 458–463 (2000)CrossRefGoogle Scholar
- 15.Viloria, A., Neira-Rodado, D., Pineda Lezama, O. B.: Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40, pp 1249–1254 (2019)Google Scholar
- 16.Wu, Q., Yan, H. S., Yang, H. B.: A forecasting model based support vector machine and particle swarm optimization. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 218–222 (2008)Google Scholar
Copyright information
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020