Skip to main content

Classification of Authors for a Recommendation Process Integrated to a Scientific Meta-Search Engine

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 181)

Abstract

The search for scientific production on the web has become a challenge, both in terms of volume, variety and updating speed. It requires tools that help the user to obtain relevant results when executing a query. Within these tools, this team has developed a specific meta-search engine for the area of computer science. In its evolution, it is intended to include recommendations from authors for each of its users’ queries. The generation of such recommendations requires a method capable of classifying the authors in order to define their inclusion and position in a list of suggestions for the end-user. This paper presents a method that fulfills this objective, after being evaluated and having obtained results that allow to propose its inclusion in later development of the recommendation system.

Keywords

  • Bibliometric indicators
  • Scientific data
  • Scientific authors
  • Classification scheme
  • Recommendation systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-4875-8_14
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-4875-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)

References

  1. Schler, J., Koppel, M., Argamon, S., Pennebaker, J. W.: Effects of age and gender on blogging. In: Computational Approaches to Analyzing Weblogs, Papers from the 2006 AAAI Spring Symposium, Technical Report SS-06-03, Stanford, California, USA, March 27–29 (2006) pp 199–205

    Google Scholar 

  2. Argamon, S., Koppel, M., Pennebaker, J.W., Schler, J.: Automatically profiling the author of an anonymous text. Commun. ACM 52(2), 119–123 (2009)

    CrossRef  Google Scholar 

  3. Peersman, C., Daelemans, W., Van Vaerenbergh, L.: Predicting age and gender in online social networks. In: Proceedings of the 3rd International Workshop on Search and Mining User-generated Contents, New York, USA, ACM (2011) pp. 37–44

    Google Scholar 

  4. Nguyen, D., Gravel, R., Trieschnigg, D., Meder, T.: “how old do you think i am?”: A study of language and age in twitter. In: Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media. ICWSM 2013 (2013)

    Google Scholar 

  5. Rangel, F., Rosso, P.: Use of language and author profiling: Identification of gender and age. In: Proceedings of the 10th Workshop on Natural Language Processing and Cognitive Science (NLPCS-2013) (2013)

    Google Scholar 

  6. Bedford, D.: Evaluating classification schema and classification decisions. Bull. Am. Soc. Inf. Sci. Technology 39, 13–21 (2013)

    CrossRef  Google Scholar 

  7. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Human Language Technology Conference (HLT-NAACL 2003) (2003)

    Google Scholar 

  8. Viloria, A., Lis-Gutiérrez, J. P., Gaitán-Angulo, M., Godoy, A. R. M., Moreno, G. C., Kamatkar, S. J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)

    Google Scholar 

  9. Tang, J.: AMiner: Mining deep knowledge from big scholar data. In: Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland pp. 373–373 (2016)

    Google Scholar 

  10. Obit, J. H., Ouelhadj, D., Landa-Silva, D., Vun, T. K., Alfred, R.: Designing a multi- agent approach system for distributed course timetabling, pp. 103–108, https://doi.org/10.1109/his.2011.6122088 (2011)

  11. Lewis, M. R. R.: Metaheuristics for university course timetabling. Ph.D. Thesis, Napier University (2006)

    Google Scholar 

  12. Deng, X., Zhang, Y., Kang, B., Wu, J., Sun, X., Deng, Y.: An application of genetic algorithm for university course timetabling problem, pp. 2119–2122, https://doi.org/10.1109/ccdc.2011.5968555 (2011)

  13. Mahiba, A.A., Durai, C.A.D.: Genetic algorithm with search bank strategies for university course timetabling problem. Procedia Eng. 38, 253–263 (2012)

    CrossRef  Google Scholar 

  14. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)

    CrossRef  Google Scholar 

  15. C. & Sotelo-Figueroa, M. A., Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J.: Generic memetic algorithm for course timetabling. In: ITC2007 Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Springer, vol. 547, pp. 481–492 (2014)

    Google Scholar 

  16. Nguyen, K., Lu, T., Le, T., Tran, N.: Memetic algorithm for a university course timeta-bling problem. pp. 67–71. https://doi.org/10.1007/978-3-642-25899-2_10 (2011)

  17. Aladag, C., Hocaoglu, G.: A tabu search algorithm to solve a course timetabling problem. Hacet. J. Math. Stat., pp. 53–64 (2007)

    Google Scholar 

  18. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826) (1989)

    Google Scholar 

  19. McGrail, M.R., Rickard, C.M., Jones, R.: Publish or perish: a systematic review of interventions to increase academic publication rates. High. Educ. Res. Dev. 25, 19–35 (2006)

    CrossRef  Google Scholar 

  20. Costas, R., van Leeuwen, T.N., Bordons, M.: A bibliometric classificatory approach for the study and assessment of research performance at the individual level: The effects of age on productivity and impact. J. Am. Soc. Inf. Sci. 61, 1564–1581 (2010)

    CrossRef  Google Scholar 

  21. Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.-J. (Paul), Wang, K.: An overview of microsoft academic service (MAS) and applications. In: Proceedings of the 24th International Conference on World Wide Web. pp. 243–246. ACM, New York, USA (2015)

    Google Scholar 

  22. Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J. P., Borrero, T. C., Varela, N. (2018, June). Web visibility profiles of Top 100 Latin American universities. In: International Conference on Data Mining and Big Data. pp. 254–262. Springer, Cham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelec Viloria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Viloria, A., Crissien, T., Lezama, O.B.P., Pertuz, L., Orellano, N., Mercado, C.V. (2020). Classification of Authors for a Recommendation Process Integrated to a Scientific Meta-Search Engine. In: Rocha, Á., Paredes-Calderón, M., Guarda, T. (eds) Developments and Advances in Defense and Security. MICRADS 2020. Smart Innovation, Systems and Technologies, vol 181. Springer, Singapore. https://doi.org/10.1007/978-981-15-4875-8_14

Download citation