Skip to main content

Performance Study of Spin Field-Effect Transistor Based on Cobalt-Modified Iron Oxide Ferromagnetic Electrode

  • Conference paper
  • First Online:
Next Generation Information Processing System

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1162 ))

  • 411 Accesses

Abstract

Spintronics-based field-effect transistors (s-FET) are a new category of devices, which is an improvement over ordinary transistor by adding the properties of magnetoresistance. The conductivity of s-FET can be controlled by the spin degree of freedom of an electron, which results in extremely low power consumption and low heat dissipation. In the present work, a primary attempt is made to analyze the performance of s-FET designed on two-dimensional electron gas substrate. Superconducting quantum interference device (SQUID) is employed to analyze the magnetic properties of ferromagnetic contacts that cobalt-modified iron oxide. The role of spin polarization in the spin transport phenomenon of s-FET is also analyzed. It is proved that for the higher possible value of spin polarization, spin current also increases. For the value of spin polarization (pā€‰=ā€‰0.8), strong enhancement was observed in the spin current. The switching action in s-FET is checked as a function of gate voltage, and it shows a strong dependence on the gate voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awschalom, D.D., Flatte, M.E.: Challenges for semiconductor spintronics. Nat. Phys. 3, 153ā€“159 (2007)

    ArticleĀ  Google ScholarĀ 

  2. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665ā€“667 (1990)

    ArticleĀ  Google ScholarĀ 

  3. Choi, W.Y., Kim, H.J., Chang, J., Han, S.H., Koo, H.C.: Ballistic spin Hall transistor using a heterostructure channel and its application to logic devices. J. Electron. Mater. 46, 3894ā€“3898 (2016)

    ArticleĀ  Google ScholarĀ 

  4. Kim, J.H., Bae, J., Min, B.C., Kim, H., Chang, J., Koo, H.C.: All-electric spin transistor using perpendicular spins. J. Magn. Magn. Mater. 403, 77ā€“80 (2016)

    ArticleĀ  Google ScholarĀ 

  5. Lin, X., Su, L., Si, Z., Zhang, Y., Bournel, A., Zhang, Y., Klein, J., Fert, A., Zhao, W.: Gate-driven pure spin current in graphene. Phys. Rev. Appl. 8, 34006ā€“34011 (2017)

    ArticleĀ  Google ScholarĀ 

  6. Dankert, A., Dash, S.P.: Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nature Commun. 8, 16093ā€“16099 (2017)

    ArticleĀ  Google ScholarĀ 

  7. Koo, H.C., Han, S.H., Chang, J.Y., Kim, H.J., Choi, J.W.: Complementary Spin Transistor Logic Circuit. U.S. Patent (2012)

    Google ScholarĀ 

  8. Krishnan, R.: Spin valve transistors. Int. J. Innov. Res. Adv. Eng. 1, 118ā€“122 (2014)

    Google ScholarĀ 

  9. Kumar, P.S.A., Lodder, J.C.: The spin-valve transistor. J. Phys. D Appl. Phys. 33, 2911ā€“2920 (2000)

    ArticleĀ  Google ScholarĀ 

  10. Koo, H.C., Kwon, J.H., Eom, J., Chang, J., Han, S.H., Johnson, M.: Control of spin precession in a spin-injected field effect transistor. Science 325, 1515ā€“1518 (2009)

    ArticleĀ  Google ScholarĀ 

  11. Xiao, Y., Zhu, R., Deng, W.: Ballistic transport in extended Datta-Das spin field effect transistors. Solid State Commun. 151, 1214ā€“1219 (2011)

    ArticleĀ  Google ScholarĀ 

  12. Kum, H., Heo, J., Jahangir, S., Banerjee, A., Guo, W., Bhattacharya, P.: Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl. Phys. Lett. 100, 182402ā€“182407 (2012)

    ArticleĀ  Google ScholarĀ 

  13. Jung, S., Lee, H.: Spin-current-induced charge current. Phys. Rev. B 71, 25341ā€“25348 (2005)

    ArticleĀ  Google ScholarĀ 

  14. Liu, L., Pai, C., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555ā€“558 (2012)

    ArticleĀ  Google ScholarĀ 

  15. Ando, Y.: Spintronics technology and device development. Jpn. J. Appl. Phys. 54, 070101ā€“070111 (2015)

    ArticleĀ  Google ScholarĀ 

  16. Sharma, P.: How to create a spin current. Science 307, 531ā€“533 (2005)

    ArticleĀ  Google ScholarĀ 

  17. Hirsch, J.E.: Spin hall Effect. Phys. Rev. Lett. 83, 1834ā€“1839 (1999)

    ArticleĀ  Google ScholarĀ 

  18. Valenzuela, S.O., Tinkham, M.: Direct electronic measurement of the spin Hall effect. Nature 442, 176ā€“179 (2006)

    ArticleĀ  Google ScholarĀ 

  19. Sakuraba, Y., Hattori, M., Oogane, M., Ando, Y.: Giant tunneling magnetoresistance in Co2MnSiāˆ•Alā€“Oāˆ•Co2MnSi magnetic tunnel junctions. Appl. Phys. Lett. 88, 192508ā€“192514 (2006)

    ArticleĀ  Google ScholarĀ 

  20. Kasai, S., Hirayama, S., Takahashi, Y.K., Mitani, S., Hono, K., Adachi, H.: Thermal engineering of non-local resistance in lateral spin valves. Appl. Phys. Lett. 104, 162410ā€“162415 (2014)

    ArticleĀ  Google ScholarĀ 

  21. Garzon, S., Zutic, I., Webb, R.A.: Temperature-dependent asymmetry of the nonlocal spin-injection resistance: evidence for spin nonconserving interface scattering. Phys. Rev. Lett. 194, 176601ā€“176608 (2005)

    ArticleĀ  Google ScholarĀ 

  22. Sugahara, S., Nitta, J.: Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124ā€“2154 (2010)

    ArticleĀ  Google ScholarĀ 

  23. Yamaguchi, T., Moriya, R., Oki, S., Yamada, S.: Spin injection into multilayer graphene from highly spin-polarized Co2FeSi Heusler alloy. Appl. Phys. Exp. 9, 63006ā€“63012 (2016)

    ArticleĀ  Google ScholarĀ 

  24. Lazic, P., Belashchenko, K.D., Zutic, I.: Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures. Phys. Rev. B 93, 241401ā€“241407 (2016)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

Prof. (Mrs.) Neetu Gyanchandani is very much thankful to Dr. S. R. Choudhary, Principal, JD College of Engineering and Management, Nagpur, for providing necessary academic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Gyanchandani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gyanchandani, N., Pawar, S., Maheshwary, P., Nemade, K. (2021). Performance Study of Spin Field-Effect Transistor Based on Cobalt-Modified Iron Oxide Ferromagnetic Electrode. In: Deshpande, P., Abraham, A., Iyer, B., Ma, K. (eds) Next Generation Information Processing System. Advances in Intelligent Systems and Computing, vol 1162 . Springer, Singapore. https://doi.org/10.1007/978-981-15-4851-2_10

Download citation

Publish with us

Policies and ethics