Skip to main content

Gaussian Processes for Efficient Plane-Based Camera Calibration

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1212))

Included in the following conference series:

  • 767 Accesses

Abstract

Camera calibration is a crucial pre-processing for 3D related computer vision applications. When non-expert calibration operators capture calibration images, they strongly require guidance what kind of images must be taken. In the literature, several types of supports have been proposed.

Focusing on the plane-based calibration method proposed by Zhang, this paper proposed to such non-expert calibration operators. The proposed method asks such operators to take calibration images with variety of position and orientation and the method takes a subset of good quality images. Thanks to Gaussian Process modeling, the proposed method can select a near optimum subset with some accuracy guarantee in the sense of submodularity. To enable this, we propose to use 4-point parameterized homography as a global image feature. We conduct a small experiment with both synthesized and a public dataset and validate the proposed method works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We cannot evaluate the calibration parameters because the dataset does not contain that information unfortunately.

  2. 2.

    We omit the 3rd dimension because all points lie on a plane.

References

  1. Baker, S., Datta, A., Kanade, T.: Parameterizing homographies. Technical report. CMU-RI-TR-06-11, Carnegie Mellon University (2006)

    Google Scholar 

  2. Bouguet, J.Y.: Camera calibration toolbox for matlab (2004)

    Google Scholar 

  3. Faugueras, O.D., Toscani, G.: The calibration problem for stereoscopic vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15–20 (1986)

    Google Scholar 

  4. Geiger, A., Moosmann, F., Car, Ö., Schuster, B., Stiller, C.: Camera and Range Sensor Calibration Toolbox: Frequently Made Mistakes. http://www.cvlibs.net/software/calibration/mistakes.php

  5. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaussian processes. In: International Conference on Machine Learning (ICML) (2005)

    Google Scholar 

  6. Hartley, R., Zisserman, A.: Estimation - 2D projective transformations, chap. 4. In: Multiple View Geometry in Computer Vision, 2 edn, pp. 87–131. Cambridge University Press (2003)

    Google Scholar 

  7. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Practical Approaches to Hard Problems. Cambridge University Press, February 2014

    Google Scholar 

  8. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Mardia, K.V., Jupp, P.E.: Directional Statistics. Probability and Statistics. Wiley, Hoboken (1999)

    Book  Google Scholar 

  11. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  12. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

    Article  MathSciNet  Google Scholar 

  13. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions—I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  14. OpenCV: OpenCV: Camera calibration and 3D reconstruction (calib3d module)

    Google Scholar 

  15. Oyamada, Y., Fallavollita, P., Navab, N.: Single camera calibration using partially visible calibration objects based on random dots marker tracking algorithm. In: IEEE ISMAR 2012 Workshop on Tracking Methods and Applications (TMA) (2012)

    Google Scholar 

  16. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  17. Richardson, A., Strom, J., Olson, E.: AprilCal: assisted and repeatable camera calibration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  18. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Trans. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  19. Uchiyama, H., Saito, H.: Random dot markers. In: IEEE Virtual Reality Conference, pp. 271–272 (2011)

    Google Scholar 

  20. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)

    Article  Google Scholar 

  21. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  22. Zhang, Z.: Camera Calibration, chap. 2, pp. 5–43. Prentice Hall (2004)

    Google Scholar 

  23. Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19K20296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Oyamada .

Editor information

Editors and Affiliations

Appendix A Plane-Based Camera Calibration

Appendix A Plane-Based Camera Calibration

This section reminds the readers a plane-based camera calibration method proposed by Zhang [21].

1.1 Appendix A.1 Pin-Hole Camera Model

Here, we describe how a point in the world coordinate is observed as an image point. Let \(\varvec{X}_{w} = [X_{w}, Y_{w}, Z_{w}]^\top \in \mathbb {R}^3\) denotes a point in the world coordinate. In the camera coordinate, the point is observed as \(\varvec{X}_{c} = [X_{c}, Y_{c}, Z_{c}]^{\top }\). The transformation from the world coordinate to the camera coordinate is expressed as

$$\begin{aligned} \tilde{\varvec{X}}_c = \begin{bmatrix} \varvec{R} \mid \varvec{t} \end{bmatrix} \tilde{\varvec{X}}_w \end{aligned}$$
(23)

where \(\tilde{X}\) denotes the homogeneous coordinate of X, \(\varvec{R} \in \mathbb {R}^{3 \times 3}\) \(3 \times 3\) rotation matrix, and \(\varvec{t}\) translation vector respectively. The rotation matrix is a redundant representation of rotation vector \(\varvec{r} \in \mathbb {R}^3\). The homogeneous coordinate of a point is described by its tilde as \(\tilde{\varvec{x}} = [\varvec{x}^{\top }, 1]^{\top }\). Following a polynomial lens distortion model [3, 20], the point is observed on the canonical frame as

$$\begin{aligned}&\varvec{x}_{d} = \varvec{x}_{n} + \varvec{d}_{\mathrm{rad}} + \varvec{d}_{\mathrm{tan}}, \end{aligned}$$
(24)
$$\begin{aligned}&\varvec{x}_{n} = \begin{bmatrix} x_n \\ y_n \end{bmatrix} = \frac{1}{Z_c} \begin{bmatrix} X_c \\ Y_c \end{bmatrix} \end{aligned}$$
(25)
$$\begin{aligned}&\varvec{d}_{\mathrm{rad}} = \begin{bmatrix} (\delta _{1}r^{2} + \delta _{2}r^{4} + \delta _{5}r^{6})x_{n} \\ (\delta _{1}r^{2} + \delta _{2}r^{4} + \delta _{5}r^{6})y_{n} \end{bmatrix}, \end{aligned}$$
(26)
$$\begin{aligned}&\varvec{d}_{\mathrm{tan}} = \begin{bmatrix} 2 \delta _{3}x_{n}y_{n} + \delta _{4}(3x_{n}^{2} + y_{n}^{2}) \\ 2 \delta _{4}x_{n}y_{n} + \delta _{3}(x_{n}^{2} + 3y_{n}^{2}) \\ \end{bmatrix}, \end{aligned}$$
(27)
$$\begin{aligned}&r = \sqrt{x_{n}^{2} + y_{n}^{2}}, \end{aligned}$$
(28)

where \(\varvec{\delta } = [\delta _{1},\ldots ,\delta _{5}]^{\top }\) denotes lens distortion parameters and \(\varvec{d}_{\mathrm{rad}}\) and \(\varvec{d}_{\mathrm{tan}}\) denote the radial distortion and tangential distortion vector respectively. The final pixel coordinate \(\varvec{x}\) is described using a calibration matrix \(\varvec{K} \in \mathbb {R}^{3 \times 3}\) as

$$\begin{aligned}&\varvec{K} = \begin{bmatrix} f_{x} &{} \theta &{} o_{x} \\ 0 &{} f_{y} &{} o_{y} \\ 0 &{} 0 &{} 1 \end{bmatrix}, \end{aligned}$$
(29)
$$\begin{aligned}&\tilde{\varvec{x}} = \varvec{K}\tilde{\varvec{x}}_{d}, \end{aligned}$$
(30)

where \([f_{x}, f_{y}]^{\top }\) denotes the focal length along x and y axes respectively, \(\theta \) the skew parameter, and \([o_{x}, o_{y}]^{\top }\) the principle point.

1.2 Appendix A.2 Plane-Based Camera Calibration

Zhang proposed a user friendly plane-based camera calibration method [23].

We first prepare a plane calibration object that has \(N (\ge 4)\) points \(\{\varvec{X}_n = (X_n, Y_n)\}\)Footnote 2 on its surface. For calibration, we take \(M (\ge 3)\) images \(\{\varvec{I}_m\}\) with different orientation. For each input image \(\varvec{I}_m\), we first extract N feature points \(\{\varvec{x}_{n,m}\}\) on the target and compute the homography \(\varvec{H}_m\) describing a 2D-2D transformation from the reference target to the input image plane as

$$\begin{aligned} \varvec{x}_{n,m} = \varvec{H}_m \varvec{X}_n. \end{aligned}$$
(31)

The homography can be decomposed into

$$\begin{aligned} \varvec{H} = \varvec{K} \begin{bmatrix} \varvec{r}_1&\!\!\varvec{r}_2 \!\!&\varvec{t} \end{bmatrix}, \end{aligned}$$
(32)

where \(\varvec{r}_1\) and \(\varvec{r}_2\) denotes the first and second column vectors of rotation matrix \(\varvec{R}\). From M homographies \(\{ \varvec{H}_m \}\), we estimate the intrinsic parameter \(\varvec{K}\) using orthogonality of vanishing points obtained from homographies [6]. Once the intrinsic parameters are estimated, we compute the extrinsic parameters \(\{\varvec{r}_m, \varvec{t}_m\}\) given \(\varvec{K}\) and \(\varvec{H}_m\) by solving Perspective-n-Points problem. Lastly, we optimize all the parameters by non-linear least squares [8, 11].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oyamada, Y. (2020). Gaussian Processes for Efficient Plane-Based Camera Calibration. In: Ohyama, W., Jung, S. (eds) Frontiers of Computer Vision. IW-FCV 2020. Communications in Computer and Information Science, vol 1212. Springer, Singapore. https://doi.org/10.1007/978-981-15-4818-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4818-5_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4817-8

  • Online ISBN: 978-981-15-4818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics