Skip to main content

Unsupervised Adversarial Learning for Dynamic Background Modeling

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2020)

Abstract

Dynamic Background Modeling (DBM) is a crucial task in many computer vision based applications such as human activity analysis, traffic monitoring, surveillance, and security. DBM is extremely challenging in scenarios like illumination changes, camouflage, intermittent object motion or shadows. In this study, we proposed an end-to-end framework based on Generative Adversarial Network, which can generate dynamic background information for the task of DBM in an unsupervised manner. Our proposed model can handle the problem of DBM in the presence of the challenges mentioned above by generating data similar to the desired information. The primary aim of our proposed model during training is to learn all the dynamic changes in a scene-specific background information. While, during testing, inverse mapping of data to latent space representation in our model generates dynamic backgrounds similar to test data. The comparative analysis of our proposed model upon experimental evaluations on SBM.net and SBI benchmark datasets has outperformed eight existing methods for DBM in many challenging scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://scenebackgroundmodeling.net/.

  2. 2.

    http://sbmi2015.na.icar.cnr.it/SBIdataset.html.

References

  1. Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recogn. 76, 635–649 (2018)

    Article  Google Scholar 

  2. Baber, C., Morar, N.S., McCabe, F.: Ecological interface design, the proximity compatibility principle, and automation reliability in road traffic management. IEEE Trans. Hum.-Mach. Syst. 49, 241–249 (2019)

    Article  Google Scholar 

  3. Bakkay, M., Rashwan, H., Salmane, H., Khoudour, L., Puigtt, D., Ruichek, Y.: BSCGAN: deep background subtraction with conditional generative adversarial networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4018–4022. IEEE (2018)

    Google Scholar 

  4. Bouwmans, T., Garcia-Garcia, B.: Background subtraction in real applications: challenges, current models and future directions. arXiv preprint arXiv:1901.03577 (2019)

  5. Bouwmans, T., Javed, S., Sultana, M., Jung, S.K.: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. arXiv preprint arXiv:1811.05255 (2018)

  6. Bouwmans, T., Maddalena, L., Petrosino, A.: Scene background initialization: a taxonomy. Pattern Recogn. Lett. 96, 3–11 (2017)

    Article  Google Scholar 

  7. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014)

    Article  Google Scholar 

  8. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cao, X., Yang, L., Guo, X.: Total variation regularized RPCA for irregularly moving object detection under dynamic background. IEEE Trans. Cybern. 46(4), 1014–1027 (2016)

    Article  Google Scholar 

  10. Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A.M., Mohamed, S., Goodfellow, I.J.: Many paths to equilibrium: GANs do not need to decrease a divergence at every step. CoRR abs/1710.08446 (2018)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Guo, X., Wang, X., Yang, L., Cao, X., Ma, Y.: Robust foreground detection using smoothness and arbitrariness constraints. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 535–550. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_35

    Chapter  Google Scholar 

  13. He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1568–1575. IEEE (2012)

    Google Scholar 

  14. Javed, S., Bouwmans, T., Sultana, M., Jung, S.K.: Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. In: Battiato, S., Farinella, G.M., Leo, M., Gallo, G. (eds.) ICIAP 2017. LNCS, vol. 10590, pp. 230–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70742-6_22

    Chapter  Google Scholar 

  15. Javed, S., Mahmood, A., Bouwmans, T., Jung, S.K.: Background–foreground modeling based on spatiotemporal sparse subspace clustering. IEEE Trans. Image Process. 26(12), 5840–5854 (2017)

    Article  MathSciNet  Google Scholar 

  16. Javed, S., Mahmood, A., Bouwmans, T., Jung, S.K.: Spatiotemporal low-rank modeling for complex scene background initialization. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1315–1329 (2018)

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Laugraud, B., Piérard, S., Droogenbroeck, M.V.: LaBGen-P-semantic: a first step for leveraging semantic segmentation in background generation. J. Imaging 4, 86 (2018)

    Article  Google Scholar 

  19. Mabrouk, A.B., Zagrouba, E.: Abnormal behavior recognition for intelligent video surveillance systems: a review. Expert Syst. Appl. 91, 480–491 (2018)

    Article  Google Scholar 

  20. Maddalena, L., Petrosino, A.: Towards benchmarking scene background initialization. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 469–476. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_57

    Chapter  Google Scholar 

  21. Patil, P., Murala, S.: FgGAN: a cascaded unpaired learning for background estimation and foreground segmentation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1770–1778 (2019)

    Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  23. Ramirez-Alonso, G., Ramirez-Quintana, J.A., Chacon-Murguia, M.I.: Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update. Pattern Recogn. Lett. 96, 34–44 (2017)

    Article  Google Scholar 

  24. Sakkos, D., Ho, E.S.L., Shum, H.P.H.: Illumination-aware multi-task gans for foreground segmentation. IEEE Access 7, 10976–10986 (2019)

    Article  Google Scholar 

  25. Sharma, L., Lohan, N.: Performance analysis of moving object detection using BGS techniques in visual surveillance. Int. J. Spatio-Temporal Data Sci. 1(1), 22–53 (2019)

    Article  Google Scholar 

  26. Sultana, M., Mahmood, A., Javed, S., Jung, S.K.: Unsupervised deep context prediction for background estimation and foreground segmentation. Mach. Vis. Appl. 30, 375–395 (2018). https://doi.org/10.1007/s00138-018-0993-0

    Article  Google Scholar 

  27. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479–6488 (2018)

    Google Scholar 

  28. Vaswani, N., Bouwmans, T., Javed, S., Narayanamurthy, P.: Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery. IEEE Signal Process. Mag. 35(4), 32–55 (2018)

    Article  Google Scholar 

  29. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems, pp. 2080–2088 (2009)

    Google Scholar 

  30. Xu, J., Ithapu, V., Mukherjee, L., Rehg, J., Singh, V.: GOSUS: Grassmannian online subspace updates with structured-sparsity. In: ICCV (2013)

    Google Scholar 

  31. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5485–5493 (2017)

    Google Scholar 

  32. Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori, G., Fei-Fei, L.: Every moment counts: dense detailed labeling of actions in complex videos. Int. J. Comput. Vision 126(2–4), 375–389 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhao, C., Cham, T.L., Ren, X., Cai, J., Zhu, H.: Background subtraction based on deep pixel distribution learning. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

    Google Scholar 

  34. Zhao, Q., Zhou, G., Zhang, L., Cichocki, A., Amari, S.I.: Bayesian robust tensor factorization for incomplete multiway data. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 736–748 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zheng, W., Wang, K., Wang, F.: Background subtraction algorithm based on Bayesian generative adversarial networks. Acta Automatica Sinica 44, 878–890 (2018)

    Google Scholar 

  36. Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: AnomalyNet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14, 2537–2550 (2019)

    Article  Google Scholar 

  37. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE T-PAMI 35(3), 597–610 (2013)

    Article  Google Scholar 

  38. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)

    Google Scholar 

  39. Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Development project of leading technology for future vehicle of the business of Daegu metropolitan city (No. 20171105).

Also this study was supported by the BK21 Plus project (SW Human Resource Development Program for Supporting Smart Life) funded by the Ministry of Education, School of Computer Science and Engineering, Kyungpook National University, Korea (21A20131600005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ki Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sultana, M., Mahmood, A., Bouwmans, T., Jung, S.K. (2020). Unsupervised Adversarial Learning for Dynamic Background Modeling. In: Ohyama, W., Jung, S. (eds) Frontiers of Computer Vision. IW-FCV 2020. Communications in Computer and Information Science, vol 1212. Springer, Singapore. https://doi.org/10.1007/978-981-15-4818-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4818-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4817-8

  • Online ISBN: 978-981-15-4818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics