Skip to main content

Application of Nanomaterials in Cancer Diagnosis, Drug Delivery, and Therapy

  • Chapter
  • First Online:
Applications of Nanomaterials in Human Health

Abstract

Cancer diagnostics and therapy has a lot to gain from advances in nanotechnology. Liposomes like nanoparticles can be loaded with probes and anti-cancer drugs to target cancer tissues. Drug delivery requires the specificity of targeting the cancer tissue; prolonged circulation of the nanoparticles in the blood; assessment of the tumor microenvironment (TME) and the controlled release of nanoparticles. This is particularly important from enhanced permeability and retention of nanomaterials, also known as the EPR effect. Thus, controlling the nanoparticles for different cancer types and in different formulations is critical. Efficacy and access of nanoparticles to the cancer cells may be monitored and regulated for specific tumor types that could lead to patient specific precision medicine. Hence, innovative nanotechnology can supplement existing molecular, cellular, and genetic techniques to study alterations across different cancer types, enabling the sorting of normal and malignant cells and tissues. For diagnostics, nanoparticle biosensors may be used in monitoring molecular signals specific to tumorigenesis, to assess tumor specific changes occurring in the malignant tissues. Here we also review novel nanotechnologies including the use of CRISPR/Cas9, CAR-T immunotherapy, and DNA and RNA nanotechnology studies in cancer theranostics design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y et al (2013) Liposome: Classification, preparation, and applications. Nanoscale Res Lett 8:102–108

    Google Scholar 

  • Akinc A et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569

    CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    CAS  Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    CAS  Google Scholar 

  • Anderson DG (2003) Lynn DM & Langer R Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed Engl 42:3153–3158

    CAS  Google Scholar 

  • Anzalone AV et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nat Vol 576:149–157

    CAS  Google Scholar 

  • Arranja AG, Pathak V, Lammers T, Shi Y (2017) Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95

    CAS  Google Scholar 

  • Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin (2014) CA Liposomal spherical nucleic acids. J Am Chem Soc 136:9866–9869

    CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  Google Scholar 

  • Berlin Grace VM, Viswanathan S (2017) Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J Drug Deliv Sci Technol 39:223–236

    CAS  Google Scholar 

  • Bossa F, Latiano A, Rossi L et al (2008) Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: A randomized, controlled study. Am J Gastroenterol 103:2509–2516

    CAS  Google Scholar 

  • Bousmail D et al (2017) Precision spherical nucleic acids for delivery of anticancer drugs. Chem Sci (Camb) 8:6218–6229

    CAS  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    CAS  Google Scholar 

  • Calin GA, Sevignani C, Dan Dumitru C, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. P Natl Acad Sci USA 101(9):2999–3004

    CAS  Google Scholar 

  • Chi YH, Hsiao JK, Lin MH, Chang C, Lan CH, Wu HC (2017) Lung cancer-targeting peptides with multi-subtype indication for combinational drug delivery and molecular imaging. Theranostics 7:1612–1632

    CAS  Google Scholar 

  • Choi CHJ, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA 110:7625–7630

    CAS  Google Scholar 

  • Chou H, Lin H, Liu JM (2015) A tale of the two PEGylated liposomal doxorubicins. Onco Targets Ther 8:1719–1720

    CAS  Google Scholar 

  • Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kü hn R. (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548

    CAS  Google Scholar 

  • Cristiano MC, Cosco D, Celia C, Tudose A, Mare R, Paolino D, Fresta M (2017) Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf B Biointerfaces 150:408–416

    CAS  Google Scholar 

  • Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10:1477–1480

    CAS  Google Scholar 

  • Cutler JI et al (2011) Polyvalent nucleic acid nanostructures. J Am Chem Soc 133:9254–9257

    CAS  Google Scholar 

  • Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391

    CAS  Google Scholar 

  • Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286(19):16606–16614

    CAS  Google Scholar 

  • Davidson B, McCray P (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340

    CAS  Google Scholar 

  • Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034

    CAS  Google Scholar 

  • Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    CAS  Google Scholar 

  • Du Y, Chen B (2019) Combination of drugs and carriers in drug delivery technology and its development. Drug Des Devel Ther 13:1401–1408

    CAS  Google Scholar 

  • Favretto ME, Cluitmans JCA, Bosman GJCGM, Brock R (2013) Human erythrocytes as drug carriers: Loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J Control Release 170(3):343–351

    CAS  Google Scholar 

  • Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA et al (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci 107:14134–14139

    CAS  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    CAS  Google Scholar 

  • Goyal R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. J Control Release 240:77–92

    CAS  Google Scholar 

  • Gregoriadis G, Leathwood PD, Ryman BE (1971) Enzyme entrapment in liposomes. FEBS Lett 14:95–99

    CAS  Google Scholar 

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Gupta N, Patel B, Ahsan F et al (2014) Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: Preparation and characterization. Pharm Res 31(6):1553–1565

    Google Scholar 

  • Hardiansyah A, Huang L-Y, Yang M-C, Liu TY, Tsai SC, Yang CY, Kuo CY, Chan TY, Zou HM, Lian WN et al (2014) Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res Lett 9:497

    Google Scholar 

  • Ho TT, Zhou N, Huang J, Koirala P, Xu M, Fung R, Wu F, Mo YY (2015) Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 43:e17

    Google Scholar 

  • Hosseini ES, Nikkhah M, Hosseinkhani S (2019) Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9. Int J Nanomedicine 14:4353–4366

    CAS  Google Scholar 

  • Hu CM, Fang RH, Zhang L (2012) Erythrocyte-inspired delivery systems. Adv Healthc Mater 1(5):537–547

    CAS  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iop gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    CAS  Google Scholar 

  • Iwai Y, Hamanishi J, Chamoto K, Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24:26

    Google Scholar 

  • Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16

    CAS  Google Scholar 

  • Jensen SA et al (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209. ra152

    Google Scholar 

  • Jones MR, Seeman NC, Mirkin CA (2015) Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347:1260901

    Google Scholar 

  • Karyampudi L, Lamichhane P, Krempski J, Kalli KR, Behrens MD, Vargas DM, Hartmann LC, Janco JM, Dong H, Hedin KE et al (2016) PD-1 blunts the function of ovarian tumor-infiltrating dendritic cells by inactivating NF-kappaB. Cancer Res 76:239–250

    CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    CAS  Google Scholar 

  • Koonin EV, Krupovic M (2015) Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 16:184–192

    CAS  Google Scholar 

  • La-Beck NM, Liu X, Wood LM (2019) Harnessing liposome interactions with the immune system for the next breakthrough in cancer drug delivery. Front Pharmacol 10:220. https://doi.org/10.3389/fphar.2019.00220

    Article  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 50 cap. Nature 345:544–547

    CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  Google Scholar 

  • Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    CAS  Google Scholar 

  • Legut M, Lipka D, Filipczak N, Piwoni A, Kozubek A, Gubernator J (2014) Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies. Int J Nanomedicine 9:653–668

    Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    CAS  Google Scholar 

  • Li J, Ai Y, Wang L et al (2016) Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76:52–65

    CAS  Google Scholar 

  • Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 25(1):1234–1257

    CAS  Google Scholar 

  • Luk BT, Fang RH, Che-Ming J et al (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004–1011

    CAS  Google Scholar 

  • Lytton-Jean AKR, Mirkin CA (2005) A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 127:12754–12755

    CAS  Google Scholar 

  • Magnani M, Rossi L (2014) Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 11(5):677–687. https://doi.org/10.1517/17425247.2014.889679

    Article  CAS  Google Scholar 

  • Mahalingam D, Nemunaitis JJ, Malik L, Sarantopoulos J, Weitman S, Sankhala K, Hart J, Kousba A, Gallegos NS, Anderson G et al (2014) Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother Pharmacol 74:1241–1250

    CAS  Google Scholar 

  • Milone MC, Bhoj VG (2018) The pharmacology of T cell therapies. Mol Ther Methods Clin Dev 8:210–221

    CAS  Google Scholar 

  • Minn I, Huss DJ, Ahn H-H, Chinn TM, Park A, Jones J, Brummet M, Rowe SP, Sysa-Shah P, Du Y, Levitsky HI, Pomper MG (2019) Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv 5:eaaw5096

    CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJA (1996) DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    CAS  Google Scholar 

  • Mitamura T, Watari H, Wang L, Kanno H, Hassan MK, Miyazaki M et al (2013) Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET. Oncogene 2:e40

    CAS  Google Scholar 

  • Mock JN, Costyn LJ, Wilding SL, Arnold RD, Cummings BS (2013) Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol 5:172–182

    CAS  Google Scholar 

  • Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly interspaced prokaryotic repeats derive from foreign generic elements. J Mol Evol 60:174–182

    CAS  Google Scholar 

  • Muthuraj B, Mukherjee S, Patra CR, Iyer PK (2016) Amplified fluorescence from polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and cancer theranostics. ACS Appl Mater Interfaces 8:32220–32229

    CAS  Google Scholar 

  • Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K et al (2012) MicroRNA-10b is a prognostic Indicator in colorectal Cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal Cancer cells. Ann Surg Oncol 19(9):3065–3071

    Google Scholar 

  • Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, Savage DF (2016) Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 34:646–651

    CAS  Google Scholar 

  • Oliveira Pinho J, Matias M, Gaspar MM (2019) Emergent nanotechnological strategies for systemic chemotherapy against melanoma. Nanomaterials (Basel) 9(10):1455

    Google Scholar 

  • Park SY et al (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556

    CAS  Google Scholar 

  • Patel PC et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    CAS  Google Scholar 

  • Peng Y, Croce C (2016) The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1:15004

    Google Scholar 

  • Petre CE, Dittmer DP (2007) Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine 2:277–288

    CAS  Google Scholar 

  • Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L (2014) Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8:10414–10425

    CAS  Google Scholar 

  • Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    CAS  Google Scholar 

  • Proud CG (2018) Phosphorylation and signal transduction pathways in translational control. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a033050

  • Radovic-Moreno AF et al (2015) Immunomodulatory spherical nucleic acids. Proc Natl Acad Sci USA 112:3892–3897

    CAS  Google Scholar 

  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    CAS  Google Scholar 

  • Robichaud N, Sonenberg N, Ruggero D, Schneider RJ (2019) Translational control in cancer. Cold Spring Harb Perspect Biol 11:a032896

    CAS  Google Scholar 

  • Rosi NL et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    CAS  Google Scholar 

  • Rui Y et al (2019) Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. https://doi.org/10.1126/sciadv.aay3255

  • Safra T (2003) Cardiac safety of liposomal anthracyclines. Oncologist 8:17–24

    CAS  Google Scholar 

  • Si W, Shen J, Zheng H et al (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 11:25

    Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    CAS  Google Scholar 

  • Somasundaram A, Burns TF (2017) The next generation of immunotherapy: Keeping lung cancer in check. J Hematol Oncol 10(1):87

    Google Scholar 

  • Song Y et al (2009) Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed Engl 48:9143–9147

    CAS  Google Scholar 

  • Sprangers AJ, Hao L, Banga RJ, Mirkin CA (2017) Liposomal spherical nucleic acids for regulating long noncoding RNAs in the nucleus. Small 13:1602753

    Google Scholar 

  • Srivastava S, Riddell SR (2015) Engineering CAR-T cells: Design concepts. Trends Immunol 36(8):494–502

    CAS  Google Scholar 

  • Steegmaier M et al (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17:316–322

    CAS  Google Scholar 

  • Sun Y, Su J, Liu G et al (2017) Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 96:115–128

    CAS  Google Scholar 

  • Tan X et al (2016) Blurring the role of oligonucleotides: Spherical nucleic acids as a drug delivery vehicle. J Am Chem Soc 138:10834–10837

    CAS  Google Scholar 

  • Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12:823–826

    Google Scholar 

  • Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR/Cas9 system. Science 343:80–84

    CAS  Google Scholar 

  • White MK, Kaminski R, Young W-B, Roehm PC, Khalili K (2017) CRISPR editing technology in biological and biomedical investigation. J Cell Biochem 118(11):3586–3594

    CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    CAS  Google Scholar 

  • Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA (2015) Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA 112:2984–2989

    CAS  Google Scholar 

  • Xu P, Wang R, Wang X, Ouyang J (2016) Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 9:2873–2884

    CAS  Google Scholar 

  • Yamankurt G, Berns EJ, Xue A et al (2019) Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat Biomed Eng 3(4):318–327

    CAS  Google Scholar 

  • Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C (2012) Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 4(127):10

    Google Scholar 

  • Yin H, Xue W, Anderson DG (2019) CRISPR–Cas: A tool for cancer research and therapeutics. Nat Rev Clin Oncol 16:281–295

    CAS  Google Scholar 

  • Young KL et al (2012) Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. Nano Lett 12:3867–3871

    CAS  Google Scholar 

  • Zetsche B, Volz SE, Zhang F (2015) A split Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142

    CAS  Google Scholar 

  • Zhen S, Li X (2019) Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther. https://doi.org/10.1038/s41417-019-0141-7

  • Zhou J, Zhao W-Y, Ma X, Ju RJ, Li XY, Li N, Sun MG, Shi JF, Zhang CX, Lu WL (2013) The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34:3626–3638

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the stimulating conversations with our colleagues at University of Chicago (Everett Vokes; Ravi Salgia and Ezra Cohen) and invaluable discussions with the colleagues at UQUDENT. We regret not including excellent reviews and original articles in nanomedicine and cancer that could have been cited; due to the limited space allotted for this chapter. No conflict of interest or funding is reported in writing this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, S.S., Al-Qahtani, M.S., Al Allaf, F.A.K., Sivakumar, L., Siddiqui, Z.K. (2020). Application of Nanomaterials in Cancer Diagnosis, Drug Delivery, and Therapy. In: Khan, F. (eds) Applications of Nanomaterials in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-4802-4_8

Download citation

Publish with us

Policies and ethics