Skip to main content

Organization of Bio-Molecules in Bulk and Over the Nano-Substrate: Perspective to the Molecular Dynamics Simulations

  • 265 Accesses

Abstract

The properties of bio-molecules are explicitly influenced by their organization in bulk and vicinity of substrate. Organization of bio-molecules can be of various kinds such as folded, unfolded, helix, swollen, globule, and so forth. These organizations of bio-molecule also depend on the local surrounding environmental conditions like temperature, solvency, adsorption, and encapsulation. Variation in environmental conditions helps to manipulate and control the organizations for the desired applications. Adsorption and encapsulation of bio-molecule over substrate have many applications in the area of drug delivery, design and development of bio-sensors, advance bio-separation process, etc. Molecular dynamics simulation is a very powerful tool to investigate the molecular structures, synthesis process and optimum properties, etc. A large number of efficient force field parameters and molecular dynamics simulators are available for large-scale simulation.

Keywords

  • Bio-molecule
  • Adsorption
  • Desorption
  • Graphene
  • SWCNT
  • Molybdenum disulfide
  • Molecular dynamics simulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-4790-4_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-4790-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6

References

  • Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press

    Google Scholar 

  • Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mat 19(11):1439–1451

    CAS  Google Scholar 

  • Anselme K, Bigerelle M (2011) Role of materials surface topography on mammalian cell response. Int Mat Rev 56(4):243–266

    CAS  Google Scholar 

  • Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed 38(13):1912–1915

    CAS  Google Scholar 

  • Banerjee AN (2016) Prospects and challenges of graphene-based nanomaterials in nanomedicine. Glob J Nano 1:555552

    Google Scholar 

  • Banerjee AN (2018) Graphene and its derivatives as biomedical materials: future prospects and challenges. Int Foc 8(3):20170056

    Google Scholar 

  • Berendsen HJC, Spoel D, Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Comm 91(1):43–56

    CAS  Google Scholar 

  • Besteman K, Lee J, Wiertz FG, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    CAS  Google Scholar 

  • Bitounis D, Ali-Boucetta H, Hong BH, Min D, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mat 25(16):2258–2268

    CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4(2):187–217

    CAS  Google Scholar 

  • Calvert P (1997) Biopolymers: the structure of starch. Nature 389(6649):338

    CAS  Google Scholar 

  • Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comp Chem 26(16):1668–1688

    CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, et al. (2006) AMBER 9. University of California, San Francisco 45.

    Google Scholar 

  • Chen R, Qin L, Jia M, He X, Li W (2010) Novel surface-modified molecularly imprinted membrane prepared with iniferter for permselective separation of lysozyme. J Mem Sci 363(1–2):212–220

    CAS  Google Scholar 

  • Chen J, Chen L, Wang Y, Chen S (2014) Molecular dynamics simulations of the adsorption of DNA segments onto graphene oxide. J Phys D: App Phys 47(50):505401

    Google Scholar 

  • Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45(8):2137–2211

    CAS  PubMed  Google Scholar 

  • Chenoweth K, Van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053

    CAS  PubMed  Google Scholar 

  • Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ et al (2011) Two dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    CAS  PubMed  Google Scholar 

  • Daggett V, Levitt M (1992) A model of the molten globule state from molecular dynamics simulations. Proc Natl Acad Sci U S A 89:5142–5146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díez-Pascual AM, Díez-Vicente AL (2015) Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. ACS App Mat Int 7(9):5561–5573

    Google Scholar 

  • Dong R, Zhang T, Feng X (2018) Interface-assisted synthesis of 2D materials: trend and challenges. Chem Rev 118(13):6189–6235

    CAS  PubMed  Google Scholar 

  • Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3(4):471–473

    CAS  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    CAS  PubMed  Google Scholar 

  • Geim AK, Novoselov KS (2010) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals, pp 11–19

    Google Scholar 

  • Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    CAS  PubMed  Google Scholar 

  • Gu Z, Yang Z, Chong Y, Ge C, Weber JK, Bell DR, Zhou R (2015) Surface curvature relation to protein adsorption for carbon-based nanomaterials. Sci Rep 5:10886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Li W, Hong L, Zhou R (2016) Exploring biological effects of MoS2 nanosheets on native structures of α-helical peptides. J Chem Phys 144(17):175103

    PubMed  Google Scholar 

  • Gu Z, Luna PD, Yang Z, Zhou R (2017) Structural influence of proteins upon adsorption to MoS2 nanomaterials: comparison of MoS2 force field parameters. Phys Chem Chem Phys 19(4):3039–3045

    CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, Pandey LM (2017) Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Bio Mat Res Part A 105(9):2391–2404

    CAS  Google Scholar 

  • Hasan A, Saxena V, Pandey LM (2018a) Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir 34(11):3494–3506

    CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Pandey LM (2018b) Conformational and organizational insights into serum proteins during competitive adsorption on self-assembled monolayers. Langmuir 34(28):8178–8194

    CAS  PubMed  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Bio Res Int. https://doi.org/10.1155/2013/578290

  • Holzinger M, Goff AL, Cosnier S (2017) Synergetic effects of combined nanomaterials for biosensing applications. Sensors 17(5):1010

    Google Scholar 

  • Hospital A, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bio Chem AABC 8:37

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Grap 14(1):33–38

    CAS  Google Scholar 

  • Inagaki M, Kang F (2014) Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J Mat Chem A 2(33):13193–13206

    CAS  Google Scholar 

  • Kavassalis TA, Sundararajan PR (1993) A molecular-dynamics study of polyethylene crystallization. Macromolecules 26(16):4144–4150

    CAS  Google Scholar 

  • Knotts TA, Rathore N, Schwartz DC, de Pablo JJ (2007) A coarse grain model for DNA. J Chem Phys 126(8):02B611

    Google Scholar 

  • Kristensen SH, Pedersen GA, Nejsum LN, Sutherland DS (2013) Protein adsorption at nanopatterned surfaces studied by quartz crystal microbalance with dissipation and surface plasmon resonance. J Phys Chem B 117(36):10376–10383

    CAS  PubMed  Google Scholar 

  • Kumar S, Pattanayek SK (2018) Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: an atomistic investigation. Chem Phys Lett 701:22–29

    CAS  Google Scholar 

  • Kumar S, Pattanayek SK (2019) Force induced removal of an encapsulated semi-flexible polymer from single walled carbon nanotube. Chem Phys 516:22–27

    CAS  Google Scholar 

  • Kumar S, Pattanayek SK, Pereira GG (2015) Polymers encapsulated in short single wall carbon nanotubes: Pseudo-1D morphologies and induced chirality. J Chem Phys 142:114901

    PubMed  Google Scholar 

  • Kurapati R, Kostarelos K, Prato M, Bianco A (2016) Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv Mat 28(29):6052–6074

    CAS  Google Scholar 

  • Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S et al (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109

    Google Scholar 

  • Li S, Chen Y, Liu H, Wang Y, Liu L, Lv F, Li Y, Wang S (2017) Graphdiyne materials as nanotransducer for in vivo photoacoustic imaging and photothermal therapy of tumor. Chem Mat 29(14):6087–6094

    CAS  Google Scholar 

  • Lindahl E, Hess B, Spoel DVD (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Mod Annual 7(8):306–317

    CAS  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    PubMed  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Neal AT, Zhu Z, Luo Z, Xu X et al (2014) Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8:4033–4041

    CAS  PubMed  Google Scholar 

  • Liu J, Chen C, Zhao Y (2019) Progress and prospects of graphdiyne-based materials in biomedical applications. Adv Mat:1804386

    Google Scholar 

  • Lopez CF, Moore PB, Shelley JC, Shelley MY, Klein ML (2002) Computer simulation studies of biomembranes using a coarse grain model. Comp Phys Comm 147(1–2):1–6

    Google Scholar 

  • Luan B, Huynh T, Zhou R (2016) Potential interference of protein–protein interactions by graphyne. J Phys Chem B 120(9):2124–2131

    CAS  PubMed  Google Scholar 

  • Marco DV, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061

    Google Scholar 

  • Mark AE, van Gunsteren WF (1992) Simulation of the thermal denaturation of hen egg white lysozyme: trapping the molten globule state. Biochemistry 31:7745–7748

    CAS  PubMed  Google Scholar 

  • Martincic M, Tobias G (2015) Filled carbon nanotubes in biomedical imaging and drug delivery. Exp Opin Drug Del 12(4):563–581

    CAS  Google Scholar 

  • Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    CAS  Google Scholar 

  • Menaa F, Abdelghani A, Menaa B (2015) Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J Tiss Eng Reg Med 9(12):1321–1338

    CAS  Google Scholar 

  • Mogurampelly S, Maiti PK (2013) Translocation and encapsulation of siRNA inside carbon nanotubes. J Chem Phys 138(3):034901

    PubMed  Google Scholar 

  • Moradi S, Hadjesfandiari N, Toosi SF, Kizhakkedathu JN, Hatzikiriakos SG (2016) Effect of extreme wettability on platelet adhesion on metallic implants: from super hydrophilicity to super hydrophobicity. ACS Appl Mat Int 8(27):17631–17641

    CAS  Google Scholar 

  • Mücksch C, Urbassek HM (2011) Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface. Langmuir 27(21):12938–12943

    PubMed  Google Scholar 

  • Muthukumar M (1986) Thermodynamics of polymer solutions. J Chem Phys 85(8):4722–4728

    CAS  Google Scholar 

  • Nelson MT, Humphrey W, Gursoy A, Dalke A, Kalé LV, Skeel RD, Schulten K (1996) NAMD: a parallel, object-oriented molecular dynamics program. Int J Sup Appl High Perf Comp 10(4):251–268

    Google Scholar 

  • Nguyen P-D, Tran TB, Nguyen DTX, Min J (2014) Magnetic silica nanotube-assisted impedimetric immunosensor for the separation and label-free detection of Salmonella typhimurium. Sen Act B: Chem 197:314–320

    CAS  Google Scholar 

  • O’Connor TC, Andzelm J, Robbins MO (2015) AIREBO-M: a reactive model for hydrocarbons at extreme pressures. J Chem Phys 142(2):024903

    PubMed  Google Scholar 

  • Okada T, Kaneko T, Hatakeyama R, Tohji K (2006) Electrically triggered insertion of single-stranded DNA into single-walled carbon nanotubes. Chem Phys Lett 417(4):288–292

    CAS  Google Scholar 

  • Ou L, Luo Y, Wei G (2011) Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface. J Phys Chem B 115(32):9813–9822

    CAS  PubMed  Google Scholar 

  • Pandey LM, Pattanayek SK (2011) Hybrid surface from self-assembled layer and its effect on protein adsorption. Appl Surf Sci 257(10):4731–4737

    CAS  Google Scholar 

  • Pandey LM, Pattanayek SK (2013) Relation between the wetting effect and the adsorbed amount of water-soluble polymers or proteins at various interfaces. J Chem Eng Data 58(12):3440–3446

    CAS  Google Scholar 

  • Pandey LM, Pattanayek SK, Delabouglise D (2013) Properties of adsorbed bovine serum albumin and fibrinogen on self-assembled monolayers. J Phys Chem C 117(12):6151–6160

    CAS  Google Scholar 

  • Park S, Lih E, Park K, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Poly Sci 68:77–105

    CAS  Google Scholar 

  • Paul W, Yoon DY, Smith GD (1995) An optimized united atom model for simulations of polymethylene melts. J Chem Phys 103(4):1702–1709

    CAS  Google Scholar 

  • Peng Q, Dearden AK, Crean J, Han L, Liu S, Wen X, De S (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nano Sci Appl 7:1

    CAS  Google Scholar 

  • Perricone U, Gulotta MR, Lombino J, Parrino B, Cascioferro S, Diana P, Cirrincione G, Padova A (2018) An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. Med Chem Comm 9(6):920–936

    CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26(16):1781–1802

    CAS  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1):1–19

    CAS  Google Scholar 

  • Pramanik D, Maiti PK (2017) DNA-assisted dispersion of carbon nanotubes and comparison with other dispersing agents. ACS App Mat Int 9(40):35287–35296

    CAS  Google Scholar 

  • Raffaini G, Ganazzoli F (2013) Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 29(15):4883–4893

    CAS  PubMed  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press

    Google Scholar 

  • Roosta S, Nikkhah SJ, Sabzali M, Hashemianzadeh SM (2016a) Molecular dynamics simulation study of boron-nitride nanotubes as a drug carrier: from encapsulation to releasing. RSC Adv 6(11):9344–9351

    CAS  Google Scholar 

  • Roosta S, Hashemianzadeh SM, Ketabi S (2016b) Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation. Mat Sci Eng: C 67:98–103

    CAS  Google Scholar 

  • Saikia N, Jha AN, Deka RC (2013) Dynamics of fullerene-mediated heat-driven release of drug molecules from carbon nanotubes. J Phys Chem Lett 4(23):4126–4132

    CAS  Google Scholar 

  • Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Hara K, Ogiwara N et al (2009) Carbon nanotubes: biomaterial applications. Chem Soc Rev 38(7):1897–1903

    CAS  PubMed  Google Scholar 

  • Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103(19):3596–3607

    CAS  Google Scholar 

  • Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C et al (2016) The ReaxFF reactive force-field: development, applications and future directions. NPJ Comp Mat 2:15011

    CAS  Google Scholar 

  • Shanmuganathan R, Edison TNJI, Oscar FL, Ponnuchamy K, Shanmugam S, Pugazhendhi A (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736

    CAS  PubMed  Google Scholar 

  • Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML (2001) A coarse grain model for phospholipid simulations. J Phys Chem B 105(19):4464–4470

    CAS  Google Scholar 

  • Shi K, Wong N, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube–protein conjugates into mammalian cells. J Am Chem Soc 126(22):6850–6851

    Google Scholar 

  • Smith W, Forester TR, Todorov IT, Leslie M (2006) The DL poly 2 user manual. CCLRC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England 2

    Google Scholar 

  • Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116(9):5951–5956

    CAS  Google Scholar 

  • Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Mod Sim Mat Sci Eng 18(1):015012

    Google Scholar 

  • Sundararajan PR, Kavassalis TA (1997) Molecular dynamics simulations of folding in cyclic alkanes. Macromolecules 30(17):5172–5174

    CAS  Google Scholar 

  • Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X et al (2017) Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mat. 29(1):1603276

    Google Scholar 

  • Tieleman DP, MacCallum JL, Ash WL, Kandt C, Xu Z, Monticelli L (2006) Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins. J Phys: Cond Matt 18(28):S1221

    CAS  Google Scholar 

  • Van Der SD, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comp Chem 26(16):1701–1718

    Google Scholar 

  • Van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409

    Google Scholar 

  • Venkata SYP, Saji KJ, Tiwari A (2016) Atomically thin MoS2: a versatile nongraphene 2D material. Adv Fun Mat 26(13):2046–2069

    Google Scholar 

  • Viela F, Granados D, Ayuso-Sacido A, Rodríguez I (2016) Biomechanical cell regulation by high aspect ratio nanoimprinted pillars. Adv Fun Mat 26(31):5599–5609

    CAS  Google Scholar 

  • Vilhena JG, Rubio-Pereda P, Vellosillo P, Serena PA, Pérez R (2016) Albumin (BSA) adsorption over graphene in aqueous environment: influence of orientation, adsorption protocol, and solvent treatment. Langmuir 32(7):1742–1755

    CAS  PubMed  Google Scholar 

  • Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126(10):3010–3011

    CAS  PubMed  Google Scholar 

  • Wang S, Li K, Chen Y, Chen H, Ma M et al (2015) Biocompatible pegylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 39:206–217

    PubMed  Google Scholar 

  • Watanabe K, Taniguchi T, Kanda H (2004) Direct-band gap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mat 3:404–409

    CAS  Google Scholar 

  • Yang H, Liu Y, Zhang H, Li Z (2006) Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation. Polymer 47(21):7607–7610

    CAS  Google Scholar 

  • Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Ang Chem Int Ed 49(12):2114–2138

    CAS  Google Scholar 

  • Zhang L, Wang X (2015) Mechanisms of graphyne-enabled cholesterol extraction from protein clusters. RSC Adv 5(16):11776–11785

    CAS  Google Scholar 

  • Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structurebased carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548

    CAS  PubMed  Google Scholar 

  • Zou J, Liang W, Zhang S (2010) Coarse-grained molecular dynamics modeling of DNA–carbon nanotube complexes. Int J Num Meth Eng 83(8–9):968–985

    Google Scholar 

  • Zuo G, Zhou X, Huang Q, Fang H, Zhou R (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Mishra, T. (2020). Organization of Bio-Molecules in Bulk and Over the Nano-Substrate: Perspective to the Molecular Dynamics Simulations. In: Chandra, P., Pandey, L. (eds) Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery . Springer, Singapore. https://doi.org/10.1007/978-981-15-4790-4_7

Download citation