Skip to main content

Bionanomaterial Thin Film for Piezoelectric Applications

  • 316 Accesses

Abstract

Wearable and flexible electronics are recently gaining interest due to the expansion of Internet of things (IoT). Thin-film piezoelectric materials have the potential to be used in the development of flexible electronic devices in energy harvesting, sensing, and biomedicine. This is mainly because of the inherent ability of piezoelectric materials to convert the mechanical energy into the electrical energy and vice versa. Piezoelectricity in material represents the property of certain crystalline structures that are capable of developing electricity when pressure is applied. However, conventional piezoelectric materials such as PZT (lead zirconate titanate) and PVDF (poly(vinylidene flouride)) are expensive, non-renewable, non-biodegradable, and lack biocompatibility due to the cytotoxic nature of lead-based materials. Piezoelectric materials from natural polymers of biomaterials may provide a solution for the drawbacks of piezoceramics and piezoelectric polymers. This review’s emphasis is on the piezoelectricity of various bionanomaterials (cellulose, chitin, chitosan, collagen, amino acid, and peptide). The various methods used to measure piezoelectricity of biomaterials are also discussed. This study shows that biomaterials have the potential to be used as piezoelectric nanogenerators in energy harvesting, sensors and biosensors, as well as in cell and tissue engineering, wound healing and drug delivery.

Keywords

  • Bionanomaterial
  • Piezoelectric
  • Nanocrystalline
  • Cellulose
  • Chitin
  • Chitosan
  • Collagen
  • Peptide

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-4742-3_4
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-981-15-4742-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M. Jacob, K.T. Varughese, S. Thomas, Dielectric characteristics of sisal-oil palm hybrid biofibre reinforced natural rubber biocomposites. J. Mater. Sci. 41, 5538–5547 (2006). https://doi.org/10.1007/s10853-006-0298-y

  2. T. Katsuura, S. Izumi, M. Yoshimoto, H. Kawaguchi, S. Yoshimoto, T. Sekitani, Wearable pulse wave velocity sensor using flexible piezoelectric film array, in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2017), pp. 1–4

    Google Scholar 

  3. J. Jacob, N. More, K. Kalia, G. Kapusetti, Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 2–11 (2018). https://doi.org/10.1186/s41232-018-0059-8

    CrossRef  Google Scholar 

  4. M. Pohanka, Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11, 448–461 (2018). https://doi.org/10.3390/ma11030448

    ADS  CrossRef  Google Scholar 

  5. M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody, P.K. Purohit, H. Ilies, T.D. Nguyen, Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 237–274 (2019). https://doi.org/10.1002/adma.201802084

  6. K. Kim, M. Ha, B. Choi, S.H. Joo, H.S. Kang, J.H. Park, B. Gu, C. Park, J. Kim, S.K. Kwak, Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 48, 275–283 (2018)

    Google Scholar 

  7. A. Hänninen, E. Sarlin, I. Lyyra, T. Salpavaara, M. Kellomäki, S. Tuukkanen, Nanocellulose and chitosan-based films as low cost, green piezoelectric materials. Carbohydr. Polym. 202, 418–424 (2018). https://doi.org/10.1016/j.carbpol.2018.09.001

    CrossRef  Google Scholar 

  8. F. Ali, W. Raza, X. Li, H. Gul, K.H. Kim, Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879–902 (2019). https://doi.org/10.1016/j.nanoen.2019.01.012

  9. B.W. An, J.H. Shin, S.Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.G. Park, E. Cho, S. Jo, Smart sensor systems for wearable electronic devices. Polymers 9, 303–341 (2017). https://doi.org/10.3390/polym9080303

  10. N.A. Hoque, P. Thakur, P. Biswas, M.M. Shaikh, S. Roy, B. Bagchi, S. Das, P.P. Ray, Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator. J. Mater. Chem. A 6, 13848–13858 (2018). https://doi.org/10.1039/C8TA04074E

    CrossRef  Google Scholar 

  11. S.K. Ghosh, D. Mandal, High-performance bio-piezoelectric nanogenerator made with fish scale. Appl. Phys. Lett. 109, 103701 (2016). https://doi.org/10.1063/1.4961623

    ADS  CrossRef  Google Scholar 

  12. S.K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy 28, 356–365 (2016). https://doi.org/10.1016/j.nanoen.2016.08.030

    CrossRef  Google Scholar 

  13. R. Dorey, R. Whatmore, Electroceramic thick film fabrication for MEMS. J. Electroceram. 12, 19–32 (2004). https://doi.org/10.1023/B:JECR.0000033999.74149.a3

    CrossRef  Google Scholar 

  14. N.R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N.M. White, J. Ding, A multilayer thick-film PZT actuator for MEMs applications. Sens. Actuators A Phys. 132, 311–316 (2006). https://doi.org/10.1016/j.sna.2006.06.006/

  15. D. Kuščer, M. Skalar, J. Holc, M. Kosec, Processing and properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thick films. J. Eur. Ceram. Soc. 29, 105–113 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.010

  16. S. Guerin, S.A.M. Tofail, D. Thompson, Organic piezoelectric materials: milestones and potential. NPG Asia Mater. 11, 1–5 (2019). https://doi.org/10.1038/s41427-019-0110-5

    ADS  CrossRef  Google Scholar 

  17. M.A.M. Harttar, M.W.A. Rashid, U.A.A. Azlan, Physical and electrical properties enhancement of rare-earth doped-potassium sodium niobate (KNN): a review. Ceram.–Silikáty 59, 158–163 (2015)

    Google Scholar 

  18. A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, Piezoelectricity and crystal symmetry, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdoğan (Springer, Boston, MA, 2008)

    Google Scholar 

  19. C.M. Weng, C.C. Tsai Hong, C.C. Lin, C.C. Chen, S.Y. Chu, J. Sheen, Z.Y. Chen, H.H. Su, Effects of non-stoichiometry on the microstructure, oxygen vacancies, and electrical properties of KNN-based thin films. ECS J. Solid State Sci. Technol. 5, 49–56 (2016). https://doi.org/10.1149/2.0291609jss

  20. M.M. Akmal, A.R.M. Warikh, U.A.A. Azlan, M.A. Azam, S. Ismail, Effect of amphoteric dopant on the dielectric and structural properties of yttrium doped potassium sodium niobate thin film. Mater. Lett. 170, 10–14 (2016). https://doi.org/10.1016/j.matlet.2016.01.135

  21. M.M. Akmal, A.R.M. Warikh, U.A.A. Azlan, N.A. Azmi, M.S. Salleh, M.S. Kasim, Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique. Ceram. Int. 44, 317–325 (2018). https://doi.org/10.1016/j.ceramint.2017.09.175

    CrossRef  Google Scholar 

  22. V.A.D. De Almeida, F.G. Baptista, An experimental assessment of PZT patches for impedance-based SHM applications, in Proceedings of the International Conference on Sensing Technology, ICST (2014), pp. 495–499

    Google Scholar 

  23. N.M. Hagh, K. Kerman, B. Jadidian, A. Safari, Dielectric and piezoelectric properties of Cu2+-doped alkali niobates. J. Eur. Ceram. Soc. 29, 2325–2332 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.003

    CrossRef  Google Scholar 

  24. L. Csoka, I.C. Hoeger, O.J. Rojas, I. Peszlen, J.J. Pawlak, P.N. Peralta, Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett. 1, 867–870 (2012). https://doi.org/10.1021/mz300234a

  25. F.B. Ahmad, Z. Zhang, W.O.S. Doherty, I.M. O’Hara, The prospect of microbial oil production and applications from oil palm biomass. Biochem. Eng. J. 143, 9–23 (2018). https://doi.org/10.1016/j.bej.2018.12.003

  26. H. Du, W. Liu, M. Zhang, C. Si, X. Zhang, B. Li, Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020

  27. F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88, 241–264 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.002

    CrossRef  Google Scholar 

  28. S. Rajala, M. Vuoriluoto, O.J. Rojas, S. Franssila, S. Tuukkanen, Piezoelectric sensitivity measurements of cellulose nanofibril sensors, in IMEKO XXI World Congress, Proceedings, Prague, Czech Republic, 30 Aug–4 Sept 2015 (2015)

    Google Scholar 

  29. S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, B.B. Khatua, A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114–125 (2018). https://doi.org/10.1016/j.mtener.2018.05.006

    CrossRef  Google Scholar 

  30. S.K. Ghosh, D. Mandal, Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring. ACS Sustain. Chem. Eng. 5, 8836–8843 (2017). https://doi.org/10.1021/acssuschemeng.7b01617

    CrossRef  Google Scholar 

  31. A. Hänninen, S. Rajala, T. Salpavaara, M. Kellomäki, S. Tuukkanen, Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystals. Procedia Eng. 168, 1176–1179 (2016). https://doi.org/10.1016/j.proeng.2016.11.397

  32. S. Rajala, T. Siponkoski, E. Sarlin, M. Mettänen, M. Vuoriluoto, A. Pammo, J. Juuti, O.J. Rojas, S. Franssila, S. Tuukkane, Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 8, 15607–15614 (2016). https://doi.org/10.1021/acsami.6b03597

  33. R. Mangayil, S. Rajala, A. Pammo, E. Sarlin, J. Luo, V. Santala, M. Karp, S. Tuukkanen, Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl. Mater. Interfaces 9, 19048–19056 (2017). https://doi.org/10.1021/acsami.7b04927

    CrossRef  Google Scholar 

  34. E. Praveen, S. Murugan, K. Jayakumar, Investigations on the existence of piezoelectric property of a bio-polymer—chitosan and its application in vibration sensors. RSC Adv. 7, 35490–35495 (2017). https://doi.org/10.1039/c7ra04752e

  35. F.B. Ahmad, M.H. Maziati Akmal, A. Amran, M.H. Hasni, Characterization of chitosan from extracted fungal biomass for piezoelectric application. IOP Conf. Ser. Mater. Sci. Eng. 778, 012034 (2020)

    Google Scholar 

  36. J. Jin, D. Lee, H.G. Im, Y.C. Han, E.G. Jeong, M. Rolandi, K.C. Choi, B.S. Bae, Chitin nanofiber transparent paper for flexible green electronics. Adv. Mater. 28, 5169–5175 (2016). https://doi.org/10.1002/adma.201600336

    CrossRef  Google Scholar 

  37. H. El Knidri, R. Belaabed, A. Addaou, A. Laajeb, A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 120, 1181–1189 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.139

    CrossRef  Google Scholar 

  38. R.M. Street, T. Huseynova, X. Xu, P. Chandrasekaran, L. Han, W.Y. Shih, W.H. Shih, C.L. Schauer, Variable piezoelectricity of electrospun chitin. Carbohydr. Polym. 195, 218–224 (2018). https://doi.org/10.1016/j.carbpol.2018.04.086

    CrossRef  Google Scholar 

  39. S.K. Ghosh, D. Mandal, Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett. 110, 123701 (2017). https://doi.org/10.1063/1.4979081

  40. W.M. Nawawi, M. Jones, R.J. Murphy, K.Y. Lee, E. Kontturi, A. Bismarck, Nanomaterials derived from fungal sources—is it the new hype? Biomacromolecules 21, 30–55 (2019). https://doi.org/10.1021/acs.biomac.9b01141

    CrossRef  Google Scholar 

  41. C.C. Silva, C.G.A. Lima, A.G. Pinheiro, J.C. Góes, S.D. Figueiró, A.S.B. Sombra, On the piezoelectricity of collagen–chitosan films. Phys. Chem. Chem. Phys. 3, 4154–4157 (2001). https://doi.org/10.1039/B100189M

    CrossRef  Google Scholar 

  42. A.H. Rajabi, M. Jaffe, T.L. Arinzeh, Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12–23 (2015). https://doi.org/10.1016/j.actbio.2015.07.010

    CrossRef  Google Scholar 

  43. V.V. Lemanov, Ferroelectric and piezoelectric properties of protein amino acids and their compounds. Phys. Solid State 54, 1841–1842 (2012). https://doi.org/10.1134/S1063783412090168

    ADS  CrossRef  Google Scholar 

  44. H. Yuan, T. Lei, Y. Qin, J.H. He, R. Yang, Design and application of piezoelectric biomaterials. J. Phys. D Appl. Phys. 52, 194002 (2019). https://doi.org/10.1088/1361-6463/ab0532

    ADS  CrossRef  Google Scholar 

  45. K. Jenkins, S. Kelly, V. Nguyen, Y. Wu, R. Yang, Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy 51, 317–323 (2018). https://doi.org/10.1016/j.nanoen.2018.06.061

    CrossRef  Google Scholar 

  46. V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms13566

    CrossRef  Google Scholar 

  47. J. Cheeke, Y. Zhang, Z. Wang, M. Lukacs, M. Sayer, Characterization for piezoelectric films using composite resonators, in 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102) (IEEE, 1998), pp. 1125–1128

    Google Scholar 

  48. A.F. Malik, V. Jeoti, M. Fawzy, A. Iqbal, Z. Aslam, M.S. Pandian, E. Marigo, Estimation of SAW velocity and coupling coefficient in multilayered piezo-substrates AlN/SiO2/Si, in 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) (IEEE, 2016), pp. 1–5

    Google Scholar 

  49. V.T. Rathod, A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers. Electronics 8, 169–174 (2019). https://doi.org/10.3390/electronics8020169

    CrossRef  Google Scholar 

  50. Y.H. Yu, M.O. Lai, L. Lu, Measurement of thin film piezoelectric constants using X-ray diffraction technique. Phys. Scr. 129, 353–357 (2007). https://doi.org/10.1088/0031-8949/2007/t129/078

    CrossRef  Google Scholar 

  51. S. Bühlmann, B. Dwir, J. Baborowski, P. Muralt, Size-effect in mesoscopic epitaxial ferroelectric structures: increase of piezoelectric response with decreasing feature-size. Integr. Ferroelectr. 50, 261–267 (2002). https://doi.org/10.1080/743817662

    CrossRef  Google Scholar 

  52. M.A.M. Hatta, M.W.A. Rashid, U.A.A. Azlan, K.S. Leong, N.A. Azmi, Finite element method simulation of MEMS piezoelectric energy harvester using lead-free material, in 2016 International Conference on Computer and Communication Engineering (ICCCE) (IEEE, 2016), pp. 511–515

    Google Scholar 

  53. J. Fialka, P. Beneš, Comparison of methods of piezoelectric coefficient measurement, in 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 13–16 May 2012, pp. 37–42

    Google Scholar 

  54. M. Stewart, M.G. Cain, P. Weaver, Electrical measurement of ferroelectric properties, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M. Cain. Springer Series in Measurement Science and Technology, vol. 2 (Springer, Dordrecht, 2014)

    Google Scholar 

  55. M.G. Cain, Characterisation of Ferroelectric Bulk Materials and Thin Films, vol. 2 (Springer, 2014)

    Google Scholar 

  56. Z. Zhao, H.L.W. Chan, C.L. Choy, Determination of the piezoelectric coefficient d33 at high frequency by laser interferometry. Ferroelectrics 195, 35–38 (1997). https://doi.org/10.1080/00150199708260482

  57. A. Gruverman, M. Alexe, D. Meier, Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 10(1), 1–9 (2019). https://doi.org/10.1038/s41467-019-09650-8

  58. H. Zhou, R.H. Han, M.H. Xu, H. Guo, Study of a piezoelectric accelerometer based on d33 mode, in 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (IEEE, 2016), pp. 216–219

    Google Scholar 

  59. R. Mohamed, M.R. Sarker, A. Mohamed, An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices. Int. J. Appl. Electromagn. Mech. 50, 537–548 (2016). https://doi.org/10.3233/jae-150129

  60. I. Kanno, H. Kotera, K. Wasa, Measurement of transverse piezoelectric properties of PZT thin films. Sens. Actuator A Phys. 10, 68–74 (2009)

    Google Scholar 

  61. W. Sriratana, R. Murayama, L. Tanachaikhan, Synthesis and analysis of PZT using impedance method of reactance estimation. Adv. Mater. Phys. Chem. 3, 62–70 (2013)

    CrossRef  Google Scholar 

  62. L. Li, Y. Yang, Z. Liu, S. Jesse, S.V. Kalinin, R.K. Vasudevan, Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. Appl. Phys. Lett. 108, 172905 (2016). https://doi.org/10.1063/1.4947533

  63. H. Shin, J. Song, Piezoelectric coefficient measurement of AlN thin films at the nanometer scale by using piezoresponse force microscopy. J. Korean Phys. Soc. 56, 580–585 (2010)

    ADS  CrossRef  Google Scholar 

  64. D.A. Bonnell, S.V. Kalinin, A. Kholkin, A. Gruverman, Piezoresponse force microscopy: a window into electromechanical behavior at the nanoscale. MRS Bull. 34, 648–657 (2009). https://doi.org/10.1557/mrs2009.176

    CrossRef  Google Scholar 

  65. H. Wang, X. Shan, T. Xie, Performance optimization for cantilevered piezoelectric energy harvester with a resistive circuit, in 2012 IEEE International Conference on Mechatronics and Automation (IEEE, 2012), pp. 2175–2180

    Google Scholar 

  66. K. Wasa, I. Kanno, H. Kotera, Fundamentals of thin film piezoelectric materials and processing design for a better energy harvesting MEMS. Power MEMS 61, 61–66 (2009)

    Google Scholar 

  67. L. Pamwani, A. Habib, F. Melandsø, B. Ahluwalia, A. Shelke, Single-input and multiple-output surface acoustic wave sensing for damage quantification in piezoelectric sensors. Sensors 18, 1–19 (2017). https://doi.org/10.3390/s18072017

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial assistance from the Ministry of Education under the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2019/TK02/UIAM/02/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Binti Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Akmal, M.H.M., Ahmad, F.B. (2020). Bionanomaterial Thin Film for Piezoelectric Applications. In: Jameel, A., Yaser, A. (eds) Advances in Nanotechnology and Its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-4742-3_4

Download citation