M. Jacob, K.T. Varughese, S. Thomas, Dielectric characteristics of sisal-oil palm hybrid biofibre reinforced natural rubber biocomposites. J. Mater. Sci. 41, 5538–5547 (2006). https://doi.org/10.1007/s10853-006-0298-y
T. Katsuura, S. Izumi, M. Yoshimoto, H. Kawaguchi, S. Yoshimoto, T. Sekitani, Wearable pulse wave velocity sensor using flexible piezoelectric film array, in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2017), pp. 1–4
Google Scholar
J. Jacob, N. More, K. Kalia, G. Kapusetti, Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 2–11 (2018). https://doi.org/10.1186/s41232-018-0059-8
CrossRef
Google Scholar
M. Pohanka, Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11, 448–461 (2018). https://doi.org/10.3390/ma11030448
ADS
CrossRef
Google Scholar
M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody, P.K. Purohit, H. Ilies, T.D. Nguyen, Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 237–274 (2019). https://doi.org/10.1002/adma.201802084
K. Kim, M. Ha, B. Choi, S.H. Joo, H.S. Kang, J.H. Park, B. Gu, C. Park, J. Kim, S.K. Kwak, Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy 48, 275–283 (2018)
Google Scholar
A. Hänninen, E. Sarlin, I. Lyyra, T. Salpavaara, M. Kellomäki, S. Tuukkanen, Nanocellulose and chitosan-based films as low cost, green piezoelectric materials. Carbohydr. Polym. 202, 418–424 (2018). https://doi.org/10.1016/j.carbpol.2018.09.001
CrossRef
Google Scholar
F. Ali, W. Raza, X. Li, H. Gul, K.H. Kim, Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879–902 (2019). https://doi.org/10.1016/j.nanoen.2019.01.012
B.W. An, J.H. Shin, S.Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.G. Park, E. Cho, S. Jo, Smart sensor systems for wearable electronic devices. Polymers 9, 303–341 (2017). https://doi.org/10.3390/polym9080303
N.A. Hoque, P. Thakur, P. Biswas, M.M. Shaikh, S. Roy, B. Bagchi, S. Das, P.P. Ray, Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator. J. Mater. Chem. A 6, 13848–13858 (2018). https://doi.org/10.1039/C8TA04074E
CrossRef
Google Scholar
S.K. Ghosh, D. Mandal, High-performance bio-piezoelectric nanogenerator made with fish scale. Appl. Phys. Lett. 109, 103701 (2016). https://doi.org/10.1063/1.4961623
ADS
CrossRef
Google Scholar
S.K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy 28, 356–365 (2016). https://doi.org/10.1016/j.nanoen.2016.08.030
CrossRef
Google Scholar
R. Dorey, R. Whatmore, Electroceramic thick film fabrication for MEMS. J. Electroceram. 12, 19–32 (2004). https://doi.org/10.1023/B:JECR.0000033999.74149.a3
CrossRef
Google Scholar
N.R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N.M. White, J. Ding, A multilayer thick-film PZT actuator for MEMs applications. Sens. Actuators A Phys. 132, 311–316 (2006). https://doi.org/10.1016/j.sna.2006.06.006/
D. Kuščer, M. Skalar, J. Holc, M. Kosec, Processing and properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thick films. J. Eur. Ceram. Soc. 29, 105–113 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.010
S. Guerin, S.A.M. Tofail, D. Thompson, Organic piezoelectric materials: milestones and potential. NPG Asia Mater. 11, 1–5 (2019). https://doi.org/10.1038/s41427-019-0110-5
ADS
CrossRef
Google Scholar
M.A.M. Harttar, M.W.A. Rashid, U.A.A. Azlan, Physical and electrical properties enhancement of rare-earth doped-potassium sodium niobate (KNN): a review. Ceram.–Silikáty 59, 158–163 (2015)
Google Scholar
A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, Piezoelectricity and crystal symmetry, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdoğan (Springer, Boston, MA, 2008)
Google Scholar
C.M. Weng, C.C. Tsai Hong, C.C. Lin, C.C. Chen, S.Y. Chu, J. Sheen, Z.Y. Chen, H.H. Su, Effects of non-stoichiometry on the microstructure, oxygen vacancies, and electrical properties of KNN-based thin films. ECS J. Solid State Sci. Technol. 5, 49–56 (2016). https://doi.org/10.1149/2.0291609jss
M.M. Akmal, A.R.M. Warikh, U.A.A. Azlan, M.A. Azam, S. Ismail, Effect of amphoteric dopant on the dielectric and structural properties of yttrium doped potassium sodium niobate thin film. Mater. Lett. 170, 10–14 (2016). https://doi.org/10.1016/j.matlet.2016.01.135
M.M. Akmal, A.R.M. Warikh, U.A.A. Azlan, N.A. Azmi, M.S. Salleh, M.S. Kasim, Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique. Ceram. Int. 44, 317–325 (2018). https://doi.org/10.1016/j.ceramint.2017.09.175
CrossRef
Google Scholar
V.A.D. De Almeida, F.G. Baptista, An experimental assessment of PZT patches for impedance-based SHM applications, in Proceedings of the International Conference on Sensing Technology, ICST (2014), pp. 495–499
Google Scholar
N.M. Hagh, K. Kerman, B. Jadidian, A. Safari, Dielectric and piezoelectric properties of Cu2+-doped alkali niobates. J. Eur. Ceram. Soc. 29, 2325–2332 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.003
CrossRef
Google Scholar
L. Csoka, I.C. Hoeger, O.J. Rojas, I. Peszlen, J.J. Pawlak, P.N. Peralta, Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett. 1, 867–870 (2012). https://doi.org/10.1021/mz300234a
F.B. Ahmad, Z. Zhang, W.O.S. Doherty, I.M. O’Hara, The prospect of microbial oil production and applications from oil palm biomass. Biochem. Eng. J. 143, 9–23 (2018). https://doi.org/10.1016/j.bej.2018.12.003
H. Du, W. Liu, M. Zhang, C. Si, X. Zhang, B. Li, Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020
F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88, 241–264 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.002
CrossRef
Google Scholar
S. Rajala, M. Vuoriluoto, O.J. Rojas, S. Franssila, S. Tuukkanen, Piezoelectric sensitivity measurements of cellulose nanofibril sensors, in IMEKO XXI World Congress, Proceedings, Prague, Czech Republic, 30 Aug–4 Sept 2015 (2015)
Google Scholar
S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, B.B. Khatua, A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114–125 (2018). https://doi.org/10.1016/j.mtener.2018.05.006
CrossRef
Google Scholar
S.K. Ghosh, D. Mandal, Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring. ACS Sustain. Chem. Eng. 5, 8836–8843 (2017). https://doi.org/10.1021/acssuschemeng.7b01617
CrossRef
Google Scholar
A. Hänninen, S. Rajala, T. Salpavaara, M. Kellomäki, S. Tuukkanen, Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystals. Procedia Eng. 168, 1176–1179 (2016). https://doi.org/10.1016/j.proeng.2016.11.397
S. Rajala, T. Siponkoski, E. Sarlin, M. Mettänen, M. Vuoriluoto, A. Pammo, J. Juuti, O.J. Rojas, S. Franssila, S. Tuukkane, Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 8, 15607–15614 (2016). https://doi.org/10.1021/acsami.6b03597
R. Mangayil, S. Rajala, A. Pammo, E. Sarlin, J. Luo, V. Santala, M. Karp, S. Tuukkanen, Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl. Mater. Interfaces 9, 19048–19056 (2017). https://doi.org/10.1021/acsami.7b04927
CrossRef
Google Scholar
E. Praveen, S. Murugan, K. Jayakumar, Investigations on the existence of piezoelectric property of a bio-polymer—chitosan and its application in vibration sensors. RSC Adv. 7, 35490–35495 (2017). https://doi.org/10.1039/c7ra04752e
F.B. Ahmad, M.H. Maziati Akmal, A. Amran, M.H. Hasni, Characterization of chitosan from extracted fungal biomass for piezoelectric application. IOP Conf. Ser. Mater. Sci. Eng. 778, 012034 (2020)
Google Scholar
J. Jin, D. Lee, H.G. Im, Y.C. Han, E.G. Jeong, M. Rolandi, K.C. Choi, B.S. Bae, Chitin nanofiber transparent paper for flexible green electronics. Adv. Mater. 28, 5169–5175 (2016). https://doi.org/10.1002/adma.201600336
CrossRef
Google Scholar
H. El Knidri, R. Belaabed, A. Addaou, A. Laajeb, A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 120, 1181–1189 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.139
CrossRef
Google Scholar
R.M. Street, T. Huseynova, X. Xu, P. Chandrasekaran, L. Han, W.Y. Shih, W.H. Shih, C.L. Schauer, Variable piezoelectricity of electrospun chitin. Carbohydr. Polym. 195, 218–224 (2018). https://doi.org/10.1016/j.carbpol.2018.04.086
CrossRef
Google Scholar
S.K. Ghosh, D. Mandal, Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett. 110, 123701 (2017). https://doi.org/10.1063/1.4979081
W.M. Nawawi, M. Jones, R.J. Murphy, K.Y. Lee, E. Kontturi, A. Bismarck, Nanomaterials derived from fungal sources—is it the new hype? Biomacromolecules 21, 30–55 (2019). https://doi.org/10.1021/acs.biomac.9b01141
CrossRef
Google Scholar
C.C. Silva, C.G.A. Lima, A.G. Pinheiro, J.C. Góes, S.D. Figueiró, A.S.B. Sombra, On the piezoelectricity of collagen–chitosan films. Phys. Chem. Chem. Phys. 3, 4154–4157 (2001). https://doi.org/10.1039/B100189M
CrossRef
Google Scholar
A.H. Rajabi, M. Jaffe, T.L. Arinzeh, Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12–23 (2015). https://doi.org/10.1016/j.actbio.2015.07.010
CrossRef
Google Scholar
V.V. Lemanov, Ferroelectric and piezoelectric properties of protein amino acids and their compounds. Phys. Solid State 54, 1841–1842 (2012). https://doi.org/10.1134/S1063783412090168
ADS
CrossRef
Google Scholar
H. Yuan, T. Lei, Y. Qin, J.H. He, R. Yang, Design and application of piezoelectric biomaterials. J. Phys. D Appl. Phys. 52, 194002 (2019). https://doi.org/10.1088/1361-6463/ab0532
ADS
CrossRef
Google Scholar
K. Jenkins, S. Kelly, V. Nguyen, Y. Wu, R. Yang, Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy 51, 317–323 (2018). https://doi.org/10.1016/j.nanoen.2018.06.061
CrossRef
Google Scholar
V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms13566
CrossRef
Google Scholar
J. Cheeke, Y. Zhang, Z. Wang, M. Lukacs, M. Sayer, Characterization for piezoelectric films using composite resonators, in 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102) (IEEE, 1998), pp. 1125–1128
Google Scholar
A.F. Malik, V. Jeoti, M. Fawzy, A. Iqbal, Z. Aslam, M.S. Pandian, E. Marigo, Estimation of SAW velocity and coupling coefficient in multilayered piezo-substrates AlN/SiO2/Si, in 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) (IEEE, 2016), pp. 1–5
Google Scholar
V.T. Rathod, A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers. Electronics 8, 169–174 (2019). https://doi.org/10.3390/electronics8020169
CrossRef
Google Scholar
Y.H. Yu, M.O. Lai, L. Lu, Measurement of thin film piezoelectric constants using X-ray diffraction technique. Phys. Scr. 129, 353–357 (2007). https://doi.org/10.1088/0031-8949/2007/t129/078
CrossRef
Google Scholar
S. Bühlmann, B. Dwir, J. Baborowski, P. Muralt, Size-effect in mesoscopic epitaxial ferroelectric structures: increase of piezoelectric response with decreasing feature-size. Integr. Ferroelectr. 50, 261–267 (2002). https://doi.org/10.1080/743817662
CrossRef
Google Scholar
M.A.M. Hatta, M.W.A. Rashid, U.A.A. Azlan, K.S. Leong, N.A. Azmi, Finite element method simulation of MEMS piezoelectric energy harvester using lead-free material, in 2016 International Conference on Computer and Communication Engineering (ICCCE) (IEEE, 2016), pp. 511–515
Google Scholar
J. Fialka, P. Beneš, Comparison of methods of piezoelectric coefficient measurement, in 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 13–16 May 2012, pp. 37–42
Google Scholar
M. Stewart, M.G. Cain, P. Weaver, Electrical measurement of ferroelectric properties, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M. Cain. Springer Series in Measurement Science and Technology, vol. 2 (Springer, Dordrecht, 2014)
Google Scholar
M.G. Cain, Characterisation of Ferroelectric Bulk Materials and Thin Films, vol. 2 (Springer, 2014)
Google Scholar
Z. Zhao, H.L.W. Chan, C.L. Choy, Determination of the piezoelectric coefficient d33 at high frequency by laser interferometry. Ferroelectrics 195, 35–38 (1997). https://doi.org/10.1080/00150199708260482
A. Gruverman, M. Alexe, D. Meier, Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 10(1), 1–9 (2019). https://doi.org/10.1038/s41467-019-09650-8
H. Zhou, R.H. Han, M.H. Xu, H. Guo, Study of a piezoelectric accelerometer based on d33 mode, in 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (IEEE, 2016), pp. 216–219
Google Scholar
R. Mohamed, M.R. Sarker, A. Mohamed, An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices. Int. J. Appl. Electromagn. Mech. 50, 537–548 (2016). https://doi.org/10.3233/jae-150129
I. Kanno, H. Kotera, K. Wasa, Measurement of transverse piezoelectric properties of PZT thin films. Sens. Actuator A Phys. 10, 68–74 (2009)
Google Scholar
W. Sriratana, R. Murayama, L. Tanachaikhan, Synthesis and analysis of PZT using impedance method of reactance estimation. Adv. Mater. Phys. Chem. 3, 62–70 (2013)
CrossRef
Google Scholar
L. Li, Y. Yang, Z. Liu, S. Jesse, S.V. Kalinin, R.K. Vasudevan, Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. Appl. Phys. Lett. 108, 172905 (2016). https://doi.org/10.1063/1.4947533
H. Shin, J. Song, Piezoelectric coefficient measurement of AlN thin films at the nanometer scale by using piezoresponse force microscopy. J. Korean Phys. Soc. 56, 580–585 (2010)
ADS
CrossRef
Google Scholar
D.A. Bonnell, S.V. Kalinin, A. Kholkin, A. Gruverman, Piezoresponse force microscopy: a window into electromechanical behavior at the nanoscale. MRS Bull. 34, 648–657 (2009). https://doi.org/10.1557/mrs2009.176
CrossRef
Google Scholar
H. Wang, X. Shan, T. Xie, Performance optimization for cantilevered piezoelectric energy harvester with a resistive circuit, in 2012 IEEE International Conference on Mechatronics and Automation (IEEE, 2012), pp. 2175–2180
Google Scholar
K. Wasa, I. Kanno, H. Kotera, Fundamentals of thin film piezoelectric materials and processing design for a better energy harvesting MEMS. Power MEMS 61, 61–66 (2009)
Google Scholar
L. Pamwani, A. Habib, F. Melandsø, B. Ahluwalia, A. Shelke, Single-input and multiple-output surface acoustic wave sensing for damage quantification in piezoelectric sensors. Sensors 18, 1–19 (2017). https://doi.org/10.3390/s18072017
CrossRef
Google Scholar