Skip to main content

Inflammation and Environmental (Ultrafine) Nanoparticles

  • Chapter
  • First Online:
Allergy and Immunotoxicology in Occupational Health - The Next Step

Abstract

Environmental nanoparticles or ultrafine particles (UFPs) are defined by their aerodynamic size <100 nm. They are either emitted directly or formed from precursor gases: in urban areas UFPs exposure originates from many combustion processes, mainly by motor vehicles. Due to the higher surface/volume ratio UFPs are biologically more reactive than larger particles because they can enter deeply into the lung, reaching the alveoli and internal organs through blood circulation.

We systematically searched in Medical Database PUBMED (MEDLINE) for eligible studies investigating inflammatory effects of environmental nanoparticles.

Data available in literature demonstrated a higher inflammatory response associated to exposure to UFPs: in in-vitro studies, in animal and human epidemiological studies. Target organs resulted lung and cardiovascular system and effects are demonstrated mainly in patients with chronic respiratory and cardiovascular diseases.

In general, exposure to UFPs resulted more effective than exposure to fine particles, suggesting a specific role of UFPs, probably related to their small site that permits higher penetration into lung and translocation in blood circulation. Moreover, toxic substances, such as polycyclic aromatic hydrocarbons that can be present in UFPs can enhance inflammatory but also carcinogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karner AA, Eisinger DS, Niemeier DA. Near-roadway air quality: synthesizing the findings from real-world data. Environ Sci Technol. 2010;44:5334–44. https://doi.org/10.1021/es100008x.

    Article  CAS  PubMed  Google Scholar 

  2. Liati A, Eggenschwiler PD. Characterization of particulate matter deposited in diesel particulate filters: visual and analytical approach in macro-, micro- and nano-scales. Combust Flame. 2010;157:1658–70.

    Article  CAS  Google Scholar 

  3. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  Google Scholar 

  4. HEI Review Panel on Ultrafine Particles. Understanding the health effects of Ambient Ultrafine Particles, in HEI Perspectives 3; 2013.

    Google Scholar 

  5. Thomson EM, Breznan D, Karthikeyan S, MacKinnon-Roy C, Charland JP, Dabek-Zlotorzynska E, Celo V, Kumarathasan P, Brook JR, Vincent R. Cytotoxic and inflammatory potential of size-fractionated particulate matter collected repeatedly within a small urban area. Part Fibre Toxicol. 2015;12:24.

    Article  Google Scholar 

  6. Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, de la Fuente JM, Cassee FR, Boon NA, Macnee W, Millar AM, Donaldson K, Newby DE, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med. 2006;173:426–31. https://doi.org/10.1164/rccm.200506-865OC.

    Article  PubMed  Google Scholar 

  7. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med. 2001;164:1665–8. https://doi.org/10.1164/ajrccm.164.9.2101036.

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization (WHO). 7 Million premature deaths annually linked to air pollution. Geneva: World Health Organization; 2014. http://www.who.int/mediacentre/news/releases/2014/airpollution/en/. Accessed 25 February 2020.

  9. Analitis A, Katsouyanni K, Dimakopoulou K, Samoli E, Nikoloulopoulos AK, Petasakis Y, Touloumi G, Schwartz J, Anderson HR, Cambra K, Forastiere F, Zmirou D, Vonk JM, Clancy L, Kriz B, Bobvos J, Pekkanen J. Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology. 2006;17:230–3. https://doi.org/10.1097/01.ede.0000199439.57655.6b.

    Article  PubMed  Google Scholar 

  10. Pope CA, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation. 2006;114:2443–8. https://doi.org/10.1161/CIRCULATIONAHA.106.636977.

    Article  CAS  PubMed  Google Scholar 

  11. Nurkiewicz TR, Porter DW, Barger M, Millecchia L, Rao KM, Marvar PJ, Hubbs AF, Castranova V, Boegehold MA. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect. 2006;114:412–9.

    Article  Google Scholar 

  12. World Health Organization, editor. Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. Geneva: World Health Organization; 2006.

    Google Scholar 

  13. World Health Organization Regional Office for Europe. Health effects of particulate matter final WHO/Europe; 2013. www.euro.who.int Accessed 27 February 2020.

  14. Manigrasso M, Vernale C, Avino P. Track aerosol lobar doses deposited in the human respiratory system. Environ Sci Pollut Res Int. 2017;24:13866–73.

    Article  Google Scholar 

  15. Xia T, Kovochich M, Nel AE. Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung disease. Front Biosci. 2007;12:1238–46.

    Article  CAS  Google Scholar 

  16. Ohlwein S, Kappeler R, Kutlar Joss M, Künzli N, Hoffmann B. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health. 2019;64:547–59. https://doi.org/10.1007/s00038-019-01202-7.

    Article  PubMed  Google Scholar 

  17. Reibman J, Hsu Y, Chen LC, Kumar A, Su WC, Choy W, Talbot A, Gordon T. Size fractions of ambient particulate matter induce granulocyte macrophage colony-stimulating factor in human bronchial epithelial cells by mitogen-activated protein kinase pathways. Am J Respir Cell Mol Biol. 2002;27:455–62.

    Article  CAS  Google Scholar 

  18. Jalava PI, Salonen RO, Halinen AI, Penttinen P, Pennanen AS, Sillanpaa M, Sandell E, Hillamo R, Hirvonen MR. In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke to Helsinki. Toxicol Appl Pharmacol. 2006;215:341–53.

    Article  CAS  Google Scholar 

  19. Jalava PI, Wang Q, Kuuspalo K, Ruusunen J, Hao L, Fang D, Väisänen O, Ruuskanen A, Sippula O, Happo MS. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation. Atmos Environ. 2015;120:427–37.

    Article  CAS  Google Scholar 

  20. Ramgolam K, Favez O, Cachier H, Gaudichet A, Marano F, Martinon L, Baeza-Squiban A. Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Part Fibre Toxicol. 2009;6:10.

    Article  Google Scholar 

  21. Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E, Proverbio MC, Bestetti G, Camatini M, Battaglia C. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 2012;209:136–45.

    Article  CAS  Google Scholar 

  22. Deng X, Feng N, Zheng M, Ye X, Lin H, Yu X, Gan Z, Fang ZS, Zhang H, Gao M, et al. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta Gen Subj. 2017;1861:112–25.

    Article  CAS  Google Scholar 

  23. Longhin E, Capasso L, Battaglia C, Proverbio MC, Cosentino C, Cifola I, Mangano E, Camatini M, Gualtieri M. Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter. Environ Pollut. 2016;209:87–98.

    Article  CAS  Google Scholar 

  24. Šimečková P, Marvanová S, Kulich P, Králiková L, Neča J, Procházková J, Machala M. Screening of cellular stress responses induced by ambient aerosol ultrafine particle fraction PM0.5 in A549 cells. Int J Mol Sci. 2019;20(24):E6310. https://doi.org/10.3390/ijms20246310.

    Article  PubMed  Google Scholar 

  25. Sotty J, Garçon G, Denayer FO, Alleman LY, Saleh Y, Perdrix E, Riffault V, Dubot P, Lo-Guidice JM, Canivet L. Toxicological effects of ambient fine (PM2.5–0.18) and ultrafine (PM0.18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. Environ Res. 2019;176:108538. https://doi.org/10.1016/j.envres.2019.108538.

    Article  CAS  PubMed  Google Scholar 

  26. Xia M, Harb H, Saffari A, Sioutas C, Chatila TA. A jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J Allergy Clin Immunol. 2018;142(4):1243–1256.e17. https://doi.org/10.1016/j.jaci.2018.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhargava A, Tamrakar S, Aglawe A, Lad H, Srivastava RK, Mishra DK, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. Environ Pollut. 2018;234:406–19.

    Article  CAS  Google Scholar 

  28. Farina F, Lonati E, Milani C, Massimino L, Ballarini E, Donzelli E, Crippa L, Marmiroli P, Botto L, Corsetto PA, Sancini G, Bulbarelli A, Palestini P. In vivo comparative study on acute and sub-acute biological effects induced by ultrafine particles of different anthropogenic sources in BALB/c mice. Int J Mol Sci. 2019;20(11):E2805. https://doi.org/10.3390/ijms20112805.

    Article  CAS  PubMed  Google Scholar 

  29. Saleh Y, Antherieu S, Dusautoir R, Alleman LY, Sotty J, De Sousa C, Platel A, Perdrix E, Riffault V, Fronval I, Nesslany F, Canivet L, Garçon G, Lo-Guidice JM. Exposure to atmospheric ultrafine particles induces severe lung inflammatory response and tissue remodeling in mice. Int J Environ Res Public Health. 2019;16(7):E1210. https://doi.org/10.3390/ijerph16071210.

    Article  CAS  PubMed  Google Scholar 

  30. Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS One. 2014;9:e92634.

    Article  Google Scholar 

  31. Rychlik KA, Secrest JR, Lau C, Pulczinski J, Zamora ML, Leal J, Langley R, Myatt LG, Raju M, Chang RC, Li Y, Golding MC, Rodrigues-Hoffmann A, Molina MJ, Zhang R, Johnson NM. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc Natl Acad Sci U S A. 2019;116(9):3443–8. https://doi.org/10.1073/pnas.1816103116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, Kobzik L. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol. 2008;38:57–67.

    Article  CAS  Google Scholar 

  33. Reiprich M, Rudzok S, Schütze N, Simon JC, Lehmann I, Trump S, Polte T. Inhibition of endotoxin-induced perinatal asthma protection by pollutants in an experimental mouse model. Allergy. 2013;68:481–9.

    Article  CAS  Google Scholar 

  34. Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol. 2014;134:63–72.

    Article  CAS  Google Scholar 

  35. Sharkhuu T, Doerfler DL, Krantz QT, Luebke RW, Linak WP, Gilmour MI. Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses. Toxicol Lett. 2010;196:12–20.

    Article  CAS  Google Scholar 

  36. Corson L, Zhu H, Quan C, Grunig G, Ballaney M, Jin X, Perera FP, Factor PH, Chen LC, Miller RL. Prenatal allergen and diesel exhaust exposure and their effects on allergy in adult offspring mice. Allergy Asthma Clin Immunol. 2010;6:7.

    Article  CAS  Google Scholar 

  37. Morales-Rubio RA, Alvarado-Cruz I, Manzano-León N, Andrade-Oliva MD, Uribe-Ramirez M, Quintanilla-Vega B, Osornio-Vargas Á, De Vizcaya-Ruiz A. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part Fibre Toxicol. 2019;16(1):7. https://doi.org/10.1186/s12989-019-0289-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Strak M, Janssen NAH, Godri KJ, Gosens I, Mudway IS, Cassee FR, Lebret E, Kelly FJ, Harrison RM, Brunekreef B, Steenhof M, Hoek G. Respiratory health effects of airborne particulate matter: the role of particle size, composition, and oxidative potential—the RAPTES project. Environ Health Perspect. 2012;120:1183–9.

    Article  CAS  Google Scholar 

  39. Clifford C, Mazaheri M, Salimi F, Ezz WN, Yeganeh B, Low-Choy S, Walker K, Mengersen K, Marks GB, Morawska L. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ Int. 2018;114:167–80. https://doi.org/10.1016/j.envint.2018.02.019.

    Article  CAS  PubMed  Google Scholar 

  40. Heinzerling A, Hsu J, Yip F. Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut. 2016;227:32.

    Article  Google Scholar 

  41. Paunescu AC, Gabet S, Bougas N, Beydon N, Amat F, Lezmi G, Momas I. Short-term exposure to ultrafine particles is associated with bronchial inflammation in schoolchildren. Pediatr Allergy Immunol. 2019;30(6):657–61. https://doi.org/10.1111/pai.13064.. Epub 2019 May 29

    Article  PubMed  Google Scholar 

  42. Buonanno G, Marks GB, Morawska L. Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ Pollut. 2013;180:246–50.

    Article  CAS  Google Scholar 

  43. Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ Int. 2018;118:48–59. https://doi.org/10.1016/j.envint.2018.05.031.. Epub 2018 May 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delfino RJ, Staimer N, Tjoa T, Gillen DL, Polidori A, Arhami M, et al. Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms. Environ Health Perspect. 2009;117:1232–8.

    Article  CAS  Google Scholar 

  45. Walker DI, Lane KJ, Liu K, Uppal K, Patton AP, Durant JL, Jones DP, Brugge D, Pennell KD. Metabolomic assessment of exposure to near-highway ultrafine particles. J Expo Sci Environ Epidemiol. 2019;29(4):469–83. https://doi.org/10.1038/s41370-018-0102-5.

    Article  CAS  PubMed  Google Scholar 

  46. Stolzel M, Breitner S, Cyrys J, Pitz M, Wolke G, Kreyling W. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol. 2007;17(5):458–67.

    Article  Google Scholar 

  47. Ruckerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Resp Crit Care Med. 2006;173:432–41.

    Article  Google Scholar 

  48. Sinharay R, Gong J, Barratt B, Ohman-Strickland P, Ernst S, Kelly FJ, et al. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet. 2018;391:339–49.

    Article  Google Scholar 

  49. Peters A, Hampel R, Cyrys J, Breitner S, Geruschkat U, Kraus U. Elevated particle number concentrations induce immediate changes in heart rate variability: a panel study in individuals with impaired glucose metabolism or diabetes. Part Fibre Toxicol. 2015;30:12–7.

    Google Scholar 

  50. Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect. 2008;116:898–906.

    Article  CAS  Google Scholar 

  51. Delfino RJ, Staimer N, Tjoa T, Gillen DL, Polidori A, Arhami M. Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms. Environ Health Perspect. 2009;117:1232–8.

    Article  CAS  Google Scholar 

  52. Holz O, Heusser K, Müller M, Windt H, Schwarz K, Schindler C, Tank J, Hohlfeld JM, Jordan J. Airway and systemic inflammatory responses to ultrafine carbon black particles and ozone in older healthy subjects. J Toxicol Environ Health A. 2018;81(13):576–88. https://doi.org/10.1080/15287394.2018.1463331.

    Article  CAS  PubMed  Google Scholar 

  53. Corlin L, Woodin M, Hart JE, Simon MC, Gute DM, Stowell J, Tucker KL, Durant JL, Brugge D. Longitudinal associations of long-term exposure to ultrafine particles with blood pressure and systemic inflammation in Puerto Rican adults. Environ Health. 2018;17(1):33. https://doi.org/10.1186/s12940-018-0379-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Larese Filon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filon, F.L. (2020). Inflammation and Environmental (Ultrafine) Nanoparticles. In: Otsuki, T., Di Gioacchino, M., Petrarca, C. (eds) Allergy and Immunotoxicology in Occupational Health - The Next Step. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4735-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4735-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4734-8

  • Online ISBN: 978-981-15-4735-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics