Skip to main content

Robotics for Rehabilitation: A State of the Art

  • Chapter
  • First Online:
Exoskeleton Robots for Rehabilitation and Healthcare Devices

Abstract

In this chapter a comprehensive review of exoskeletons for upper and lower limb rehabilitation is presented. Commercial robots, with an emphasis on the pathologies they deal with, are described and classified using the NASA Technology Readiness Level (TRL) metric. In addition, their type of movements and certifications are presented. Finally, future trends regarding the use of exoskeletons in the rehabilitation process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance (University of Alabama at Birmingham, Birmingham, 2017)

    Google Scholar 

  2. K. Takahashi, K. Domen, T. Sakamoto et al., Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial. Stroke 47(5), 1385–8 (2016)

    Article  Google Scholar 

  3. E. Pirondini, M. Coscia, S. Marcheschi et al., Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J. Neuroeng. Rehabil. 13(9) (2016)

    Google Scholar 

  4. J. Hidler, D. Nichols, M. Pelliccio et al., Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neural Repair 23(1), 5–13 (2008)

    Article  Google Scholar 

  5. D. Grasmücke, A. Zieriacks, O. Jansen et al., Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. NeuroRehabil. J. (2017)

    Google Scholar 

  6. M. Sczesny-Kaiser, O. Höffken, M. Aach et al., HAL exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J. Neuroeng. Rehabil. (2015)

    Google Scholar 

  7. F. Yakub, A.Z. Khudzari, Y. Mori, Recent trends for practical rehabilitation robotics, current challenges and the future. Int. J. Rehabil. Res. 37(1), 9–21 (2014)

    Article  Google Scholar 

  8. L. Chong, S. Jianfeng, J. Linhong, Lower limb rehabilitation robots: a review, in World Congress on Medical Physics and Biomedical Engineering (2012), pp. 2042–2045

    Google Scholar 

  9. P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn et.al., A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11(3) (2014)

    Google Scholar 

  10. R. Riener, M. Guidali, U. Keller, A. Duschau-Wicke, V. Klamroth, T. Nef, Transferring ARMin to the Clinics and Industry. Top. Spinal Cord. Inj. Rehabil. 17(1), 54–59 (2011)

    Article  Google Scholar 

  11. C. Murray et al., Global Burden of Diseases, Injuries and Risk Factors Study 2013. The Lancet (2014)

    Google Scholar 

  12. T. Proietti, V. Crocher, A. Roby-Brami et al., Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016)

    Article  Google Scholar 

  13. T. Desplenter, A. Kyrylova, T. Stanbury et al., A werable mechatronic for arm rehabilitation, in 5th IEEE International Conference on Biomedical Robotics Biomechanics (2014), pp. 491–496

    Google Scholar 

  14. I. Lamers, A. Maris, D. Severijns et al., Upper Limb Rehabilitation in People with Multiple Sclerosis: A Systematic Review. Neurorehabil. Neural Repair. 30(8), 773–793 (2016)

    Article  Google Scholar 

  15. H. Shing, S. Quan, Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Med. Eng. Phys. 34(3), 261–268 (2012)

    Article  Google Scholar 

  16. M. Babaiasl, S. Mahdioun, P. Jaryani, M. Yazdani, A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist Technol. 11(4), 263–280 (2015)

    Google Scholar 

  17. R.A. Gopura, D.S. Bandara, K. Kiguchi, G.K. Mann, Developments in hardware systems of active upper-limb exoskeleton robots: A review. Rob. Auton. Syst. 75, 203–220 (2016)

    Article  Google Scholar 

  18. B. Volpe, H. Krebs, N. Hogan et al., Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53(8), 1874–1876 (1999)

    Article  Google Scholar 

  19. G. Prange, M. Jannink, C. Groothius et al., Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43(2), 171–184 (2006)

    Google Scholar 

  20. J. Mehrholz, T. Platz, J. Kugler et al., Electromechanical and robot assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst. Rev. 8(4) (2008)

    Google Scholar 

  21. T. Nef, R. Riener, ARMin: design o novel arm rehabilitation robot, in 9th IEEE Conference on Rehabilitation Robotics (2005), pp.57–60

    Google Scholar 

  22. V. Klamroth-Marganska, J. Blanco, K. Campen et al., Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 13(2), 159–166 (2014)

    Article  Google Scholar 

  23. R. Calabro, M. Russo, A. Naro et al., Robotic gait training in multiple sclerosis rehabilitation: can virtual reality make the difference? Findings from a randomized controlled trial. J. Neurol. Sci. 377, 25–30 (2017)

    Article  Google Scholar 

  24. Hocoma, Home - Hocoma (2017), https://www.hocoma.com/. Accessed 26 June 2017

  25. M. Cardona, M.A. Destarac, C.E. García, Exoskeleton robots for rehabilitation: State ofthe art and future trends, IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII). Managua 2017, 1–6 (2017).https://doi.org/10.1109/CONCAPAN.2017.8278480

  26. S. Scott, Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J. Neurosci. Methods 89, 119–127 (1999)

    Google Scholar 

  27. S. Ball, I. Brown, S. Scott, MEDARM: a rehabilitation robot with 5DOF at the shoulder complex, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2007), pp. 4–7

    Google Scholar 

  28. I. Treger, S. Faran, H. Ring, Robot-assisted therapy for neuromuscular training of sub-acute stroke patients. A feasibility study. Eur. J. Phys. Rehabil. Med. 44(4), 431–5 (2008)

    Google Scholar 

  29. F. Bovolenta, P. Sale, V. Dall’Armi, P. Clerici, M. Franceschini, Robot-aided therapy for upper limbs in patients with stroke-related lesions. Brief report of a clinical experience. J. Neuroeng. Rehabil. 8 (2011)

    Google Scholar 

  30. E. Ruffaldi, M. Barsotti, D. Leonardis et al., Evaluating virtul embodiment with the ALEx exoskeleton. Haptics: Neurosci. Device Model. Appl. 8618, 133–140 (2014)

    Google Scholar 

  31. J. García, C.E. García, L. Monge et al., in Mechanical Design of a Robotic Exoskeleton for Upper Limb Rehabilitation, Advances in Automation and Robotics Research in Latin America, ed. by I. Chang, et al. (Springer International Publishing, Berlin, 2017), pp. 297–308

    Google Scholar 

  32. M.A. Destarac, C.E. García, R. Saltarén, et al., Modeling and simulation of upper brachialplexus injury. IEEE Syst. J. 10(3), 912–921 (2016)

    Google Scholar 

  33. K. van Kammen, A. Boonstra, L. van der Woude et al., Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. Neurorehabil. Neural Repair 23(1), 5–13 (2008)

    Google Scholar 

  34. A. Domingo, T. Lam, Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J. Neuroeng. Rehabil. (2014)

    Google Scholar 

  35. A.E. Chisholm, R.A. Alamro, A.M. Williams, T. Lam, Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J. Neuroeng. Rehabil. (2017)

    Google Scholar 

  36. T. Aurich-Schuler, B. Warken, J.V. Graser et al., Practical recommendations for robot-assisted treadmill therapy (Lokomat) in children with cerebral palsy: indications, goal setting, and clinical implementation within the WHO-ICF framework. Neuropediatrics (2015)

    Google Scholar 

  37. A. AKoenig, M. Wellner, S. Köneke et al., Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol. Inf. (2008)

    Google Scholar 

  38. K. Raab, K. Krakow, F. Tripp, M. Jung, Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study. Spinal Cord Ser Cases (2016)

    Google Scholar 

  39. G. Zeilig, H. Weigarden, M. Zwecker et al., Safety and tolerance of the ReWalk\(^\text{RM}\) exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J. Spinal Cord Med. 35, (2012)

    Google Scholar 

  40. T. Platz, A. Gillner, N. Borgwaldt, S. Kroll, S. Roschka, Device-training for individuals with thoracic and lumbar spinal cord injury using a powered exoskeleton for technically assisted mobility: achievements and user satisfaction. Biomed. Res. Int. (2016)

    Google Scholar 

  41. P. Asselin, S. Knezevic et al., Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. (2015)

    Google Scholar 

  42. D.B. Fineberg, P. Asselin, N.Y. Harel et al., Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J. Spinal Cord. Med. 313–321 (2013)

    Google Scholar 

  43. H. Watanabe, R. Goto, N. Tanaka et al., Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study. NeuroRehabil. J. 363–367 (2017)

    Google Scholar 

  44. R. Kasai, S. Takeda, The effect of a Hybrid Assistive Limb on sit-to-stand and standing patterns of stroke patients. J. Phys. Ther. Sci. (2016)

    Google Scholar 

  45. T. Yoshimoto, I. Shimizu, Y. Hiroi, Sustained effects of once-a-week gait training with hybrid assistive limb for rehabilitation in chronic stroke: case study. J. Phys. Ther. Sci. (2016)

    Google Scholar 

  46. A. Russo, K. Endersby, M. Perret et al., A robotic exoskeleton to provide increased mass practice for gait training and its impact on discharge destination for individuals with acute stroke (Poster Presentation, ISC Meeting, 2016)

    Google Scholar 

  47. K. Hohl, S.L. Deems-Dluhy, A. Jayaraman, K. Scanlan, Exoskeleton gait training for individuals affected by severe, chronic stroke (Platform Presentation, ACRM Meeting, 2016)

    Google Scholar 

  48. A.J. Kozlowski, T.N. Bryce, M.P. Dijkers, Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj. Rehabil. (2015)

    Google Scholar 

  49. S.A. Kolakowsky-Hayner et al., Safety and feasibility of using the Ekso\(^\text{TM}\) bionic exoskeleton to aid ambulation after spinal cord injury. J. Spine 4 (2013)

    Google Scholar 

  50. A. Spencer, H. Kevin, G. Michael, An Assistive Controller for a Lower-Limb Exoskeleton for Rehabilitation after Stroke, and Preliminary Assessment Thereof. Conf. Proc. IEEE Eng. Med. Biol. Soc. (2015)

    Google Scholar 

  51. A. Ekelem, S. Murray S, M. Goldfarb, Preliminary assessment of variable geometry stair ascent and descent with a powered lower limb orthosis for individuals with paraplegia. Conf. Proc. IEEE Eng. Med. Biol. Soc. (2015)

    Google Scholar 

  52. R.J. Farris, H.A. Quintero, M. Goldfarb, Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia. Conf Proc IEEE Eng Med Biol Soc (2012)

    Google Scholar 

  53. H. Quintero, R. Farris, C. Hartigan et al., A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals. Top Spinal Cord Inj Rehabil (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Government of El Salvador for its support through the “Fondo de Investigación de Educación Superior (FIES)”. Manuel Cardona would like to thank to Fundación Carolina and Universidad Don Bosco for their support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cardona .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardona, M., Destarac, M., Cena, C. (2020). Robotics for Rehabilitation: A State of the Art. In: Exoskeleton Robots for Rehabilitation and Healthcare Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4732-4_1

Download citation

Publish with us

Policies and ethics